
5inclair-

lXII-FORTH
ROM

with Multi-Tasking

BY

®

SKYWAVE SOFTWARE®
Producers of High Quality Forth Products

73 CURZON ROAD, BOSCOMBE, BOURNEMOUTH, BHl 4PW, ENGLAND
TELEPHONE: (0202) 5 lines)
International +44 202 302385

Partners: D. J. HUSBAND, D. HUSBAND

admin
Rectangle

admin
Rectangle

admin
Rectangle

admin
Rectangle

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND

1.0 Introduction

1.1 Introduction to ZX81-FORTH

2.0 Installation and System Description

2.1 Installing the EPROM.
2.2 Initial Power-up.
2.3 Warm and Cold Restart.
2.4 System response & errors.

3.0 Visual Editor

3.1 Editor Commands.
3.2 Compilation of code.
3.3 Creating Screens.
3.4 SLOW, FAST and AUTO.

4.0 Mass Storage and Retrieval

4.1 Information Storage.
4.2 Information Retrieval.
4.3 Compiling screens with Loading.
4.4 Loading Sequential Screens.

3.0 Structure and Command Description

3.1 Stack Structure.
3.2 The dictionary and its use.
3.3 Command format.

6.0 Mathematical commands

7.0 Logical operators & Comparison

7.1 Logical Operators.
7.2 Comparison Operators.

8.0 Number Bases & Stack Manipulation

8.1 Number Bases.
8.2 Stack Manipulation.

ZXBl-FORTH Features INDEX

Page 1

Section 0-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND

9.0 Memory Commands & Memory Manipulation

10.0 Data Types and Variables

10.1
10.2
10.3

Data Types.
Variable.
Integer.

11.0 Control Structures

12.0 Character Input/Output

12.1
12.2
12.3
12.4
12.5

Character Stack.
Character Commands.
Character/Number Stack.
Character Comparison.
Keyboard Allocations.

13.0 The Printer

14.0 D~ining Words

14.1
14.2
14.3

Colon I Semi-colon.
<BUILDS • • • DOES>
Operating System Words.

15.0 TIME & the System Clock

16.0 Tasking

17.0 CODE Compiler

18.0 Applications

19.0 Final Comments

19.1
19.2
19.3

Any Problems ?
AcknDMledgements
Copies

20.0 Memory Map

ZX81-FORTH Features INDEX

Page 2

Section 0-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 3

1.1 Introduction

This Manual is intended as a guide to the use of ZXB1-FDRTH, and
assumes that the user will use it in conjunction with a book on
FORTH. We recommend the book 11The Complete FORTH" by Alan
Winfield, which is available from most: booksellers or in case of
difficulty from us for £6.95 + £1.00 postage and packing.

Where possible, ZXB1-FORTH matches the fig-FORTH commands,
although ZXB1-FORTH is not fig-FORTH. It was not possible to
include all the fig-FORTH words because of ROM spaca limitations.
ZX81-FORTH also contains some non-standard words so that multi­
tasking can be accomplished.

ZXB1-FORTH is multi-tasking. This gives the programmer the
ability to write raal-time routines as is described in section
14.

ZXB1-FORTH is, we believe, an improvement: on the fig standard in
some ways by making ZXB1-FORTH a compiler directive language
instead of interpretive. Interpretive FORTH contains a series of
addresses for each word, these being linked together by an inner­
interpreter. The inner interpreter consists of an address
threader using about: 13 bytes and some other routines taking the
total to about 70 bytes. The inner-interpreter requires 170 T
states of execution time (~50uS> on a Z80. This inner-interpreter
is a routine which must: run as overhead for every address
interpreted. A compiler directive language contains a series of
calls to subroutines in each command or word. Therefore, the
overhead of an inner interpreter is not necessary. The result is
that compiler directive FORTH is about three times faster than
interpretive FORTH in most programming applications.

Since ZXBl-FORTH is not an interpretive language but instead is a
compiler directive language, it should not really be classified
as a TIL <Threaded Interpretive Language>, but instead it: would
be better to call the language a Threaded Compiler Language.

ZXBl-FORTH contains most of the standard fig-FORTH words. The
language of FORTH is a structured programming language which
allows the user to manage and manipulate all of the dynamic
memory addressable by the microprocessor. FORTH is also a
language in which the user can link down to machine code routin ..
and in this respect, FORTH is only a step above as-bly level
programming. FORTH is however, a high-level user friendly
language in that it allows the user to create his own command
set. The entire program set written in FORTH is a customised set
of instructions and in this way approaches other high-level
languages.

Introduction to ZXBl-FORTH Section 1-1

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 4

In addition to the standard attributes o~ the FORTH language,
ZX81-FORTH adds extra ~lexibility with its multi-tasking. Multi­
tasking allows the user to schedule programs to run at any time
in the ~uture. This is a ~eature available only on •uch mare
expensive systems. With the proper hardware, such as plenty ~
I/0, a multi-tasking system can be used as a real-time
controller. This means that the computer can operata at a speed
su~~icient enough to control the environment as events occur. A
multi-tasking system could be used to enter data from a real-time
environment. An example would be sampling the breathing cycle a~
a patient in a hospital in order to determine his or her
respiratory rate. A multi-tasking system also gives the user the
flexibilty ~ allowing a program to run in the background (it is
possible to run one program in the background while editing
another in the foreground>.

FORTH is somewhat harder to learn than BASIC,
flexibility gained Mith FORTH makes it a desirabl•
language ~or most, i~ not, all programming tasks.

ZX81-FORTH is also y~x~ y~~ fast. Try this test :

hDMBver the
prOQr ing

In BASIC this program takas over ~ •inutas (in SLOW .ad•>

10 FOR I • 0 TO 30000
20 NEXT I

The nearest equivalent in ZX81-FORTH takes about 4 seconds in
SLOW, and le§§ ~b!!!l .! !!!!'69!ld in AUTO. Try it yourself.

AUTO 30000 0 DO LOOP

That makes ZX81-FORTH, for this ltXample, about 309 times ~aster
than ZX-81 BASIC!!

Introduction to ZX81-FORTH Section 1-1

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 5

2.1 Installing the EPROM

DAVID HUSBAND sells the ZX81-FORTH ROM as a 'fit it yours.lf'
conversion or as a ready converted computer. Those with the ready
converted unit should skip this section and go to section 2.2
Initial power up.

Take the cover off the computer. There are five screws in the
bottom of the case. <Three are under the pads; the pads are glued
on and are easily removed.) The case is shown in figure 2.1.

After removing the screws, the two halves of the case are easily
separated. Opening the case will reveal the underside of the
printed circuit board. Remove the two screws in this board as is
shown in figure 2.2. Next, flip the circuit board over •aking
sure that the ribbon cable to the keyboard does not pull out.

At this point you should be looking at the various integrated
circuits on the board. Identify the BASIC ROM chip. You can find
a picture of this circuit board in your Sinclair Manual. It is on
either page 119 or page 162. The picture on page 162 is not of
the issue 3 pcb.

Remove the BASIC ROM with great care. If it is soldered in, use a
hot soldering iron and an efficient solder-sucker. Claar the
unused 4 holes because we will use all 28 pins. Replace the BASIC
ROM with the 28-pin I.e. Socket provided, taking care to put it
in carefully. Finally plug in the EPROM supplied, with the
correct orientation.

If the EPROM supplied is a 2564, it will have a couple of its
pins modified to take into account the non-standard signals on
the 28-pin BASIC ROM socket.

Next, turn the Sinclair circuit board over and secure it with the
two screws you removed previously. Then, replace the cover and
insert the five screws previously removed fro• the holes in the
cover. At this point ZX81-FORTH will be operational <note that no
BASIC will be available in this configuration.>

Installing the EPROM Section 2-1

ZX81-FORTH Manual <C> DAVID HUSBAND Page 6

0 0 0

0

0)

0

Installing the EPROM Section 2-1

ZX81-FORTH Manual <C> DAVID HUSBAND Page 7

2.2 Initial Power-up

After completing section 2.1, or having purchased a ready
converted computer, the system is ready for power-up. This
section will describe for you how the various screens in ZX81-
FORTH should look when you first turn the power on. After
inserting the power line on the computer the screen should look
like Figure 2.5. If the screen did not come up, insert the power
line again. You could also try a cold restart. This is done by
holding the SHIFT key and SPACE key down simultaneously for about
half a second.

Here are some possible reasons why your screen did not come up
properly:

Did you correctly install the 28-pin socket after removing the
BASIC ROM ?

Did you correctly insert the ZX81-FORTH ROM in the 28-pin
socket ?

Did you bend any of the circuit board pins over during
installation ?

Is your RAM Pack attached properly ? If the connections are
not good, the system will not display the video information.
It is best to remove the RAM Pack (if you have a 2k system>
and power-up again.

ZX81-FORTH BY DAVID HUSBAND
COPYRIGHT <c> 1983

l

Screen upon power-up or COLD restart.
Figure 2.5

There are two sets of screens in ZX81-FORTH, the first one we
have seen. The second one is a split screen. To display the split
screen, hold down the SHIFT and EDIT keys simultaneously. Now the
screen should appear as shown in Figure 2.6.

Initial Power-up Section 2-2

ZX81-FORTH Manual <C> DAVID HUSBAND

I

This is the editor part o~ the
screen.It is re~erred to as ED
in the so~tware.

This is the run-time part o~

the screen. It is re~erred to
as CO or console in the
so~tware

EDITOR SCREEN
Fig 2.6

Page 8

You can toggle between the two parts o~ the screen by using the
SHIFT/EDIT keys.

To ensure that your system is working correctly, type the
~allowing commands:-

VLIST <NEW LINE>

• CPU <NEW LINE>

Initial Power-up

This will display all o~ the ZXBl-FORTH
words presently in memory •

This identi~ies the type o~ processor
which is presently running. <A ZB0>

Section 2-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 9

2.3 Warm and Cold Restarts

ZXBl-FORTH can be re-initialised from software anytime without
having to pull out the power supply lead.

WARM RESTART: WARM <NEW LINE> will execute a warm start.

A warm restart can also be performed by holding
<SHIFT/SPACE> down for an instant.

BREAK

A warm restart resets the stack pointers to the absolute bottom.
The system then checks for a catastrophic error such as an over­
write of the system variables. If necessary, a warm restart calls
a cold restart to recover. The editor is reset to the CONSOLE
screen. Finally, if the task flag is off <command TOFF> any
background task is set to a null program and all tasks are
LOCKED.

COLD RESTART: COLD <NEW LINE> A cold restart is performed by
holding the BREAK key down for about half a second.

A cold restart reconfigures the entire system and brings up the
original screen, as if the power had just been turned on. All
working memory <RAM > 4000H> is erased. Cold restart also checks
for the amount of RAM attached to the Sinclair and stores this
value in a system variable.

Warm and Cold Restarts Section 2-3

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 10

2.4 System Response & Errors

ZX81-FORTH prompts the user with an
operation in the execution screen. The
as putting a number onto the stack,
entire line o~ program. As long as no
reports with an OK.

OK a~ter each success~ul
operation may be as simple
or as complicated as an
error is ~ound, the system

I~ some error should occur during an operation, an ERROR
statement will be displayed on the screen ~allowed by an error
code. The error codes are as ~allows:-

ERROR F This error message is displayed
attempts to ~orget a FENCEd word. I~
appears anywhere in the list o~ words
this error will be displayed.

when the user
the FENCEd word
being ~orgotten

* ERROR H This error message will be ~lagged i~ the user
attempts to enter a token which cannot be interpret~

as a hexadecimal number or is not ~ound in the
Dictionary.

ERROR M This error message is displayed when the available
usable memory <RAM> is almost ~ull. An error M will
occur when the user program area runs to within 32
bytes a~ the parameter stack.

ERROR R Error R stands ~or redundant. I~ the user trys to
de~ine a word with the same nama which belongs to a
program already in the dictionary, an error R will be
~lagged. The word or task you are de~ining will still
be de~ined but will have priority over the previous
word in the dictionary and the word or task already
de~ined will no longer be accessable to the programmer.

* ERROR S This message is displayed i~ the parameter stack
pointer under~lows, something which should never happen
since popping unde~ined in~ormation of~ the stack is a
no-no.

* ERROR U Error U stands ~or Unde~ined word. This message is
displayed when a word is used in a d~inition and
either does not convert properly into a number or is
not ~ound in the dictionary. <This is only ~allowed by
a warm restart i~ it is ~ound in the middle a~ a
de~ini tion).

* NOTE: These errors will generate a warm restart a~ter their
display.

System Response & Errors Section 2-4

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 11

3.0 The Editor

ZXB1-FORTH uses ASCII characters. This is a deviation from the
Sinclair BASIC. It uses its own, non-standard, character set.
Using ASCII makes the system much more flexible in terms of
communicating with existing computer systems (mast of which use
ASCII to communicate to modems and printers>.

The visual editor is a screen editor, not a line
gives the user a great deal of flexibility in
programs.

editor.
writing

This
FORTH

ZXSl-FORTH uses twa screen areas, so dan~t be confused. The first
screen appears when you turn on the power. <See fig 2.5). The
second screen is displayed with the SHIFT/EDIT set of keys. Once
you are in the second screen <Fig 2.6> you can use the top part
of the screen for editing. The lower part is an execution screen.
<This will be called the console.> The twa parts are separated by
a black band called the video pad. You can switch between edit
and execution screens using the SHIFT/EDIT keys.

3.1 Editor Commands

Note: If you hold any key down for more than one second, the
depressed key will repeat.

SHIFT/<­
SHIFT/~
SHIFT/1'­
SHIFT/->
SHIFT/9
SHIFT/4
SHIFT/0

Moves the cursor one space left.
Moves the cursor one line down.
Maves the cursor one 1 i ne up.
Maves the cursor one space right.
Inserts a line at cursor position.
Deletes the line at cursor position.
Deletes the character at cursor position.

On the editor screen, pressing NEW LINE moves the cursor dawn
one line and does not compile that line. Continued typing on a
line will provide immediate wraparound onto the next line should
you type beyond the end of the screen. However, if you go back
and insert characters in full lines, they will not wraparound.
Instead the characters will be lost off the right side of the
screen.

The insertion made is automatic. Typing a character in the middle
of a line moves all the characters following the cursor to the
right.

The following commands deal with the video pad.

SHIFT/3
SHIFT/2

Takes the cursor line and stores it in Pad.
Takes the contents of Pad and puts them at the
cursor position, moving the other lines below,
downwards.

Editor Commands Section 3-1

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 12

3.2 Compilation OT Code

The Tollowing commands deal with the compilation OT code Tram the
editor screen. There are two ways to write code in ZXB1-FORTH.
The Tirst is to enter commands one by one in the console screen.
<The console screen is described in Section 2). The more
desirable method OT writing code is to write a series OT words in
the editor screen and then either compile the entire screen or
compile the lines one by one. This allows you the Treedom to go
back and change things in the editor screen and recompile.

SHIFT/Q Compiles the line aT code at the cursor position, and
the compiled line then appears in the execution screen.

A FORTH word may be more than one line long. In this case you
will have to place the cursor on the top line, compile it, and
then move the cursor to compile the rest of the line. Do not
worry about the compiler, it will wait until it Tinds a semicolon
<;> beTore it assumes that the end OT a FORTH word is reached.

IT the line is successTully compiled, an OK will appear at the
end OT the line. IT the line does not compile properly due to a
programming error, then ERROR will be displayed Tollowed by the
appropriate code. The error codes are explained in Section 2.4.

CPL Compiles the entire editor screen.

Use this command aTter you have Tilled the entire editor screen
and wish to compile all the statements. This is also very useTul
Tor compiling screens aTter they have been downloaded Tram the
cassette tape.

You do not have to write all OT your code in the editor screen
and then compile it. You can compile FORTH code line by line in
either Screen 1 (Tig 2.5) or in the execution portion af Screen 2
<Tig 2.6). Each word that you type Nhile on the execution screen
is compiled immediately. It is Tor this reason that using the
editor to hold uncDfttPiled <or SDUrce> code is desireable. You can
aaake changes to the middle of a program beTore it is too lat.• t.o
change it.

The editor screen can b• turned oTf in order t.o make the present.
screen only an execution screen.

EDFF Turns the editor screen ofT.

The editor screen can be turned back on again by using the
SHIFT/EDIT key.

Compilation OT Code Section 3-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 13

3.3 Creating Screens

Any number ~ screens can be created using the SCREEN command. A
screen is a portion ~ the video display in llllhich characters can
be placed. You can have as many screens as you wish and they can
be any rectangular size, ranging froat on• character by one
character to as large as the screen itself. If a screen is
defined outside the bounds ~ the video display, the screen will
be defined in RAM outside the bounds of FDeeH to FFFFH <Video
RAM>.

The definition of a screen is as follows:

a b c d SCREEN name

a .. column number of upper left hand corner.
b .. row number ~ upper left hand corner.
c .. column number ~ 1 ower right hand corner.
d .. row number ~ lower right hand corner •
name = this can be any screen name desired by the user.

0 0 15 15 SCREEN S1 <NEW LINE> This command will create
a screen starting in row
1, col 1 and continuing
to row 16, col 16.

To display something on this screen, type:

H HELLO THERE H S1 .w
OK

<NEW LINE>

Screens are defined in the dictionary, so they can be disabled by
FORGETting thl!ftl just as you would forget any FORTH NOrd.

FORGET S1 <NEW LINE> would disable screen S1

Every screen has a name and this name serves as an identifier
which must be used with certain commands that deal with different
screens. Some ~ these words are REV, • W, • C, and wi 11 be
discussed in later sections ~ this manual.

When you power-up, two screens are already dltf i ned. The doei nant
screen is the console screen or execution screen and it has an
identifier ~ CD. The editor screen which is enabled by
SHIFT/EDIT has an identifier ~ ED. To use words tlllhich direct
output to different screens use these identifiers.

CD
ED

Console screen identifier.
Editor screen identifier.

Creating Screens Section 3-3

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 14

3.4 Fas~, SlDN, Au~o

ZXB1-FORTH s~ill accep~s ~he SLOW and FAST ca.aands as does
Sinclair•s BASIC. In FAST mode, ~he video display is ~urned ~f
un~il the CPU finishes processing the program. In SLOW mode, the
video display always remains an but only 20X ~ the processing
time is used to execu~e the program, the o~her BeX is Used ~0

update the display.

The individual keys no longer initiate the SLOW and FAST
commands, instead you IIMJ.St type ~hetR au~ le~ter by la~~er.

ZXB1-FORTH also suppar~s the command AUTO. AUTO will in~errupt

~he video display if the processor requires more ~hen 1/4 second
~o execu~e a program.

It is possible to make any screen reverse video. The Mard REV
along wi~h the screen identifier is used to ~aggle the screen
from reverse video to normal or vice versa.

CO REV
ED REV

will make the console screen reverse video.
will make the editor screen reverse video.

REV Executed af~er
dominan~ background field.

Fast, Slow, Auto

a screen identifier ~o rever!llt
<reverse video or normal video).

Section 3-4

the

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 15

4.1 Storage

ZX81-FORTH allows for the storage of screens or a series of
screens on magnetic cassette tape. The whole editor screen will
be saved, therefore make sure that only the information you want
to save appears on that screen.

Both LOAD and STORE will temporarily stop video output to the
screen. The timing required to store or load screens requires all
of the processor time, and because no interrupts are issued
during the cassette routines, all tasking is suspended.

Storage takes place fro. the editor screen. <This is the portion
of the video display above the black band as shown in fig.2.6>.
Each screen is loaded with an identifying number. You should take
care to retnetnber which number a specific screen is, so that if a
large number of screens are stored on a tape each one will not
have to be viewed to find the information you want.

Simplest case:

Fill the editor screen with any information which
After you are finished go to the execution
SHIFT/EDIT>.

Such a screen might look like this:

THIS SCREEN WILL BE AN EXAMPLE
SHOWING HOW ONE I'IIGHT STORE
INFORtiATION ONTO THE TAPE. NOTE
THAT THIS SCREEN DOES NOT HAVE
TO BE A PROGRAI'I. A SCREEN IS
512 BYTES OF INFORI'IATION. YOU
CAN STORE ANY SECTION OF I'IEI'IORY
BY MOVING IT TO THE YIDEO RAft OF
THE EDITOR SCREEN <WHICH STARTS
AT FDee HEX.)

10 STORE <NEW LINE>

you desire.
screen <type

Ret~~ember that there is actual! y a five second leader on most
cassette tapes which cannot be taped over. Therefore, advance the
tape at least ten seconds before storing information.

STORE Takes a number off the parameter stack, in this case
ten, and stores the editor screen with the number as an
identifier.

You can only store information frDtll the editor screen. You can
not store information from the execution screen <also referred to
as the console screen>. This should not be a probletB, because for
most large programs, you will be working in the editor screen.

Storage Section 4-1

ZXB1-FORTH Manual (C) 1983 DAVID HUSBAND Page 16

4.2 Retrieval

To retrieve in~ormation ~ram the tape, the LOAD command is used.
As an example, to retrieve the same screen we just loaded in the
last section, the command is:

10 LOAD <NEW LINE>

LOAD This command takes the number an the parameter stack as
the screen number to be loaded ~ram the tape. The routine will
continue to look for the screen until it is found or until it is
interrupted by hitting the space key.

After typing 10 LOAD, rewind the tape, then press PLAY and wait
for the computer to read the tape. When the screen is read from
the tape, the editor area will contain the same information that
it ~ontained when it was loaded onto the tape.

Typing 0 STORE will ensure that the screen will be the first
loaded no matter what number is specified with LOAD.

Typing 0 LOAD will load the first screen found an the tape
regardless of screen number. Also, all subsequent screens <after
the first screen> can also be loaded using the --> command
described in the next section.

ZXB1-FORTH allows any in~ormation on the editor screen to be
stared and loaded. The contents ~ the screen do nat have to be
FORTH words or definitions. ZXB1 BASIC does not allow this. With
ZXBl-FORTH you have a way to store any in~ormatian that you wish
(letters, etc.>.

Retrieval Section 4-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 17

4.3 Loading and Compiling Screens

When loading any program from the tape to the editor screen, all
of the code on that screen can be compiled as soon as it is
loaded.

CON
COFF

The command to turn on the automatic screen compiler.
The command to turn off the automatic screen compiler.

As an example, create a simple program on the editor screen and
store it on the tape as screen 1. Now use the fallowing commands:

CON 1 LOAD <NEW LINE> This will automatically
compile the screen which has been loaded from the tape.

The screen compiler defaults to off on initial pDNer-up, or an a
COLD restart.

Loading and Compiling Screens Section 4-3

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 18

4.4 Sequential Screen Loading

There may be many times when your FORTH program is longer than
one screen. When this happens each screen must be loaded and
compiled before the next screen can be loaded. It is important
that you store your screens in increasing sequential order if you
want to load and compile them in sequence.

To store screens onto the tape in sequential order, you may use
the following command:

<-- This command stores the present editor screen with a
screen number which is one larger than the last screen stored.

In order to load screens sequentially, the command is:

--> This symbol, when placed at the bottom of the editor
screen and compiled, increments the screen count and loads the
next screen.

PAGE

BLK

This is an INTEGER variable which contains the most
recently accessed STOREd or LOADed page number.

This INTEGER contains the address for the address to
which the tape will download and from which the tape
is loaded. The default value is the origin of the
display buffer.

Warning: If
sequentially,
each screen.

you are campi 1 i ng each screen as it is 1 oaded
you must give the compiler enough time to compile

There are two ways to do this:

1. Stop the tape after each screen has been loaded and is
compiling. When the computer is ready to load another screen
(horizontal lines appear> restart the tape.

2. If large blank spaces are left on the tape when you are
saving sequential screens, there should be enough time to compile
each screen before the next one is to be loaded.

Either of these methods should ensure that the next screen on
tape will not be "played'' before the computer is ready to receive
it.

Sequential Screen Loading Section 4-4

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 19

5.1 Stack Structure

FORTH is different from most other computer languages in that it
uses a stack. A stack is a data structure which stores things in
the order in which they were entered. Items can be removed with
the last item first. Here is an example:

Configure your screen so that you are on SCREEN 1, or the
execution part of SCREEN 2. Enter three numbers:

0 1 2 <NEW LINE> The stack looks like this:

2 top
1
0 bottoat

To display the top item on the stack, simply type :

<NEW LINE>

This will remove 2 from the stack and display it. Typing :

<NEW LINE> a second time will display the 1.

All the mathematical operations are also performed on the stack.
To examine this, type the following:

0 2 3 <NEW LINE> The stack looks like :

3
2
0

Now type :

* <NEW LINE> This command takes the top two items off
of the stack, multiplies them, and puts the result back on the
stack. The result is :

6
0

If another multiplication were performed, then :

* <NEW LINE> Would leave a :

0

Most of the commands in ZX81-FORTH use a stack. ZX81-FORTH has a
separate 8-bit character stack and a 16-bit number stack. You
will be using the number <or parameter> stack most of the time.
The character stack is discussed in more detail in the section on
character input and output.

Stack Structure Section 5-1

ZXBl-FORTH Manual <C> 1983 DAVID HUSBAND Page 20

5.2 Dictionary and its Use

After reading the last section you should have a feel far haw the
number stack works. ZX81-FORTH wards are stared in another place
in memory, the dictionary. The dictionary graws upwards from
4000H. Every FORTH ward is stared in memory with a header. The
header contains the number of characters in the ward plus the
characters of the ward itself. The number of characters plus the
characters themselves are used by the outer-interpreter when a
search of the dictionary is made for a ward.

The programmer can create new wards in the dictionary using
various compiling wards. These wards are described in detail in
Section 14.

Here is an example of haw a new ward would be defined using the
COLON and SEMI-COLON compiling wards. <Known as a Colan
Definition>. To create a ward which takes the average of twa
numbers an the stack and displays the result, type :

: AVG

or : AVG

+ 2 I

+ 2 I

• . ,
. . ,

<NEW LINE> an the execution screen •

<SHIFT/E) an the editor screen •

The above program computes averages by adding the twa values an
the stack and then pushing 2 an to the stack and performing a
divide. The dot (.) then takes the value off the stack and
displays it.

The ward AVG can now be used to take the average of twa numbers.
Find the average of 86 and 46 by typing :

86 46 AVG
66 OK

<NEW LINE>

The answer of 66 is displayed to the screen.

VARIABLEs and INTEGERs <constants> can also be created in the
dictionary. This is covered in Section 10.

Dictionary and its Use Section 5-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 21

5.3 Command Format

Many of the descriptions of the ZX81-FORTH words will be of the
following form :

top -> stack
before

execution
COMMAND

stack <-- top
after

execution

Each word is described by an example. The state of the stack is
shown before and after the word is executed. The words are first
described in a generic format and then an example of each one is
given.

What the symbols mean :

n = 16 bit number <nl, n2, n3 etc.>
d = 32 bit number (dl, d2, d3 etc.> Sometimes nlow and nhigh

are used to describe how double numbers appear on
the stack or in the dictionary.

u = unsigned 16 bit number.
addr = represents an address in memory.

b = byte.
c = character.
f = boolean flag (0=- false, 1= true>.

Command Format Section 5-3

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 22

6.0 Mathematical Commands

ZX81-FORTH uses integer arithmetic. For some this may be
inconvenient at first. However, one of the commodities a computer
has is speed. Often it is desired that operations be performed as
quickly as possible, perhaps because the calculation is done many
times per second, and integer arithmetic is mY~n faster than
floating point arithmetic. If you need more accuracy in your
values, the values can be scaled by a factor of 100 or 1000.
Scaling by 100 would allow you to include pennies in calculations
based in the pound and pence system.

Most 16 bit arithmetic is signed arithmetic in ZX81-FORTH.
However, most 32 bit, and all 64 bit arithmetic is unsigned. This
may seem to present a problem if you are not keeping track of the
approximate magnitude of your calculations.

Here is the difference between signed and unsigned arithmetic.
Below is listed a chart showing the difference, with the Binary
and Hex formats of the numbers shown. This can be extended to 32
bit and 64 bit numbers.

+-------------+-----------------------+------------+------------+
UNSIGNED BINARY HEX SIGNED

+-------------+-----------------------+------------+------------+
65535 1111111111111111 FFFF -1
65534 1111111111111110 FFFE -2

32768 1000000000000000 8000 -32768
32767 0111111111111111 7FFF 32767

. .
0 0000000000000000 0000 0

+---------- • • I•

+

Table 6.1
Unsigned, Signed, Binary, and Hex Numbers

<Addition) Adds the top twa stack it... n 1 and n2
leaving the su. on the stack.

n1 + n
n2

Mathematical Commands

1 1 + • <NEW LINE)
201<

Section 6-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 23

<Subtraction) Subtracts the top item, n1 from the second
item, n2 and leaves the result on the stack.

n1 - n 2 1 - • <NEW LINE>
n2 1 OK

* <Multiplication) Multiplies the top two items, n1 and n2,

.I

n1 * n
n2

<Division)

n1 .I n
n2

<Multiply by 2>

n1 2* n

and leaves the product on top of the stack.

2 4 * . <NEW LINE)
BOK

Divides the second item, n2 by the top item,
n1, and leaves the result on top.

two.

6 2 .I • <NEW LINE)
3 OK

This multiplies the top stack item by

3 2* • <NEW LINE>
601<

2./ <Divide by 2> This divides the top item by two.

nl 2./ n 4 2./ • <NEW LINE>
2 OK

ABS <Absolute Value> Leaves the absolute value of the top

nl ABS n

I'IAX <Maximum>

nl MAX n
n2

I'IIN <Minimulll)

nt MIN n
n2

item on top of the stack.

-12 ABS • <NEW LINE>
12 OK

Finds the larger of the two top stack itet8S
and leaves it on top of the stack.

9 4 MAX • <NEW LINE>
9 OK

Finds the Slllaller of the top two stack i tiNtS
and leaves it an top of the stack.

9 4 PUN • <NEW Lit£>
401<

Mathematical Commands Section 6-0

ZX81-FORTH Manual

MINUS <Unary minus>

n1 I"'INUS n

<Swap Sign>

<C> 1983 DAVID HUSBAND Page 24

Changes the sign ~ the tap stack it ...

31 I"'INUS • <NEW LINE>
-31 OK

Applies the sign ~ the tap it .. , n1, to the
second item, n2 and 1 eaves the second item at
the top of the stack.

n1 +- n2 <signed>
n2

2 -3 +- • <NEW LINE>
-2 OK

MOD

/MOD

n1 I"'OD nr
n2

n1 /MOD n1
n2 n2

*/MOD

"'

n1 */MOD nr
n2 nq
n3

n1 1"1* d
n2

n M/ nr
d nq

Per~orms the division, n2/n1, and leaves the
16 bit remainder on the stack.

15 4 I"'OD • <NEW LINE>
3 OK

Per~orms the division, n2/n1, and leaves the
remainder n1 on top, and the quotient, n2, as
the second item.

5 2 /MOD • <NEW LINE>
1 OK • <NEW LINE>
2DK

Multiplies the second, n2, and third, n3,
items and divides by the ~irst, nl, leaving
the remainder on the top o~ the stack with
the quotient below it. (Signed arith .. tic>.

3 3 2 *II"'DD • <NEW LINE>
1 OK • <NEW LINE>
4DK

This IBllltiplies two 16 bit nu.bers, nl ilnd
n2, and leaves a 32 bit result, d.

20008 20000 M* D. <NEW LINE>
400000000 OK

This divides a 32 bit nu.ber, d, by a 16 bit
number, n, leaving a 16 bit r ... inder, nr, on
top o~ the stack and a 16 bit quotient, nq,
as the second i tam.

4eeeee001. 20000 1"1/ • <NEW LINE>
1 OK • <NEW LINE>
20008 OK

Mathematical Commands Section 6-0

ZX81-FORTH Manual

MD/

D/

*'

D+

dl MD* dlDM
d2 dhigh

dl
dloM
dhigh

MD/ dr
dq

d1 D* d
d2

n1 *' n
n2
n3

<32 bit add>

d1 D+ d1
d2

<C> 1983 DAVID HUSBAND Page 25

This multiplies two 32 bit numbers on the
stack leaving a 64 bit result.

This divides a 64 bit number by a 32 bit
number, d1, leaving a 32 bit remainder, dr,
and a 32 bit result, dq.

This multiplies tND signed 32 bit
numbers together and leaves a 32 bit
result on the stack.

integer
signed

-30000. 25000. D* D. (NEW LINE>
-750000000 OK

This takes
divides it
generating
quotient.

a 32 bit unsigned number and
by a 32 bit unsigned number

a 32 bit remainder and a 32 bit

Multiplies the second item, n2, and the third
item, n3, and then divides by the first, n1,
leaving the result on the stack.

4 6 3 *I • <NEW LINE>
SDK

This is a double prec1s1on add which adds the
top 32 bit numbers found an the stack.

400000. 40000. D+ D. <NEW LINE>
440000 OK

D- (32 bit subtract> Performs a double prec1s1on subtraction

d1 D- d1
d2

of the tap 32 bit item frDfB the second 32 bit
item.

Mathematical Commands Section 6-0

ZX81-FORTH Manual

DABS (32 bit ABS>

dl DABS d2

<C> 1983 DAVID HUSBAND Page 26

This operation takes the absolute value ~
the 32 bit number on the stack.

DMINUS <32 bit MINUS> Changes the sign on a 32 bit number.

dl DMINUS d2

<Unsigned *)

u1 U* u
u2

40000. DMINUS D. <NEW LINE)
-40000 OK

This multiplies the
found on the stack,
result ..

two unsigned
leaving an

6000 6 U* U. <NEW LINE>
36000 01<

numbers
unsigned

UMOD <Unsigned MOD> The second unsigned 32 bit
divided by the top number,
unsigned remainder.

i teat, ud2, is
ul, leaving the

u1 UMOD u
ud2

U/MOD <Unsigned /MOD> The second unsigned 32 bit item, ud2, is

u1 U/MOD ur
ud2 uq

divided by the top number, ul, leaving the
remainder on the top of the stack and the
quotient as the second item.

Mathematical Commands Section 6-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 27

7.1 Logical Operators

AND Per~orms a bitwise AND o~ the two 16 bit items on
the stack.

OR

XOR

13 00001101
7 00000111

AND
5 00000101

(8 bit example)

re5Ult

Per~orms a bitwise OR ~ the twa 16 bit i tetDs on
the stack.

5
9
OR
13

00000101
00001001

00001101

(8 bit example)

result <13• 0D hex>

Per~orms a bitwise exclusive-or, XOR, o~ the two
16 bit items on the stack.

5
7
XOR
2

00000101
00000111

00000010

<8 bit example>

Logical Operators Section 7-1

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 28

7.2 Comparison Opera~ors

< If ~he second s~ack i~em is less ~han ~he firs~,

~he opera~ion leaves a 1, o~herwise i~ will leave
a 0.

>

0<

=

C=

u1 < f
u2

u1 > f
u2

u1 0= f

u1 0> f

u1 0< f

u1 = f
u2

c1 C= f
c2

0 2 < • <NEW LINE>
1 OK ~rue

If ~he second s~ack i~em is grea~er ~han ~he

firs~, ~he opera~ion leaves a 1, o~herwise i~ will
leave a 0.

0 2 > • <NEW LINE>
0 OK false

Tes~s whe~her ~he ~op i~etn is 0. If i~ is, ~hen

~he opera~ion leaves a 1, o~herwise i~ will leave
a 0.

13 0= • <NEW LINE>
0 OK false

Tes~s whe~her ~he s~ack i~em is posi~ive. If i~

is, ~hen ~he opera~ion leaves a 1, o~herwise i~
leaves a 0.

Tes~s whe~her the s~ack item is negative. If it
is, then the opera~ion leaves a 1, o~herwise i~
leaves a 0.

Tests whe~her the ~op two s~ack items are equal.
If they are, the operation leaves a 1, otherwise
it leaves a 0.

37 DUP =
1 OK

<NEW LINE>
true

Jus~ like = but it only checks the least
significant byte of the ~wo 16 bit stack i~ems.

259 3 C= • <NEW LINE>
1 OK true <259 mod 256 = 3>

Comparison Operators Section 7-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 29

D<

D>

D=

DMAX

DMIN

D0=

U<

dl D< ~
d2

d1 D> ~
d2

d1 D= ~

d2

d1 DMAX d
d2

d1 DMIN d
d2

d D0= ~

u1 U< ~

u2

Checks i~ the second 32 bit item is larger than
the ~irst 32 bit item. I~ the operation is true,
then a 1 is l~t, otherwise a 0 is l~t. This is
an unsigned comparison.

Checks i~ the second 32 bit item is smaller than
the ~irst 32 bit item. I~ the operation is true,
then a 1 is l~t, otherwise a 0 is l~t. This is
an unsigned comparison.

Checks
equal.
l~t.

Leaves
stack.

i~ the two 32 bit items on the stack are
I~ they are, a 1 is left, otherwise a 0 is

the larger 0~ the two 32 bit items on the
This is an unsigned operator, 50 -2. will

be greater than 2.

Leaves the smaller o~ the twa 32 bit items on the
stack. This is an unsigned operator.

Checks whether the 32 bit item on the stack is
equal to e. I~ it is, a 1 is le~t, otherwise a 0
is l~t.

This is an unsigned less than comparison o~ the
two 16 bit items on the stack. I~ u2 is less than
ul, then a 1 is l~t, otherwise a 0 is le~t.

Comparison Operators Section 7-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 30

8. 1 Number Bases

FORTH is capable of working in any number base. This is not so
difficult to achieve~ however~ as the microprocessor can only
work in Binary. This means that a conversion process must be done
to work in Decimal or Hex. Once you have that conversion process~
it is not difficult to extend it to cover ~!! number bases. FORTH
refers to a variable called BASE during numerical conversion~ and
changing base is as simple as changing the contents of the
variable BASE.

The default base on initial power-up is Decimal.
9)

<Base 10~ 0 to

DECIMAL Sets the current base to decimal.

HEX

BASE

Sets the current base to hexadecimal. <Base 16)

An INTEGER variable used to contain the current
base of the system.

n1 TO BASE <NEW LINE>

BASE • <NEW LINE>
n1 OK

Makes the current base n1.

Places current base on to the stack

3 TO BASE <NEW LINE> Changes the base to 3
DECIMAL 532 3 TO BASE • <NEW LINE>
201201 OK <201201 is 532 in base 3>

After DECIMAL and HEX~ the most useful number base is BINARY
and a definition of BINARY would be :

: BINARY 2 TO BASE ;

Number Bases Section 8-1

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 31

8.2 Stack Manipulation

A dot ''." prints the top 16 bit item on the output
device (video screen>.

1 2 3 • <NEW LINE>
3 OK prints the top item

D. <Double number display> A double number <32 bit item>
is taken ~f ~ the top of the stack and displayed
on the screen.

U. <Unsigned number display) An unsigned number is taken
off of the top of the stack and displayed on the
screen. An unsigned 16 bit number ranges from 0-
65535 whereas a signed 16 bit number ranges from -
32768 to +32767.

S->D This is a 16 to 32 bit sign extension word.

n1 S->D d1 45 S->D D. <NEW LINE>
45 OK

D->Q This is a 32 to 64 bit sign extension word.

DROP

2DROP

DUP

?DUP

OVER

n1 DROP n2
n2

n1 DUP n1
n1

n1 OVER n2
n2 n1

n2

Drops the top stack item.

Drops the top two stack items, or a double number.

Copies the top stack item.

Duplicates the top item only if it is non-zero.

Copies the second stack item to the top.

Stack Manipulation Section 8-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 32

PICK

SWAP

Copies the stack item indexed by the top stack
item, and places it on top o~ the stack.

nl 3 PICK n3
n2 nl
n3 n2

n3 (a 2 PICK is the same as an OVER>

This word interchanges the top two stack items.

nl SWAP n2
n2 nl

DSWAP This word interchanges the top two 32 bit stack
items.

ROT

dl DSWAP d2
d2 dl

nl ROT n3
n2 nl
n3 n2

This word rotates the top three stack items. Item
3 goes to the top, and the remaining two items are
pushed down the stack.

Stack Manipulation Section 8-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 33

9.0 Memory Commands & Memory Manipulation

FC56H is an address containing the present memory size connected
to the ZXBt. To display the memory size type the following :

MEM

VLIST

SP@

ALLOT

@

addr @ nt

nl !

addr

HEX FC56 @ DECIMAL • <NEW LINE>
16384 OK <This is the memory size of a

system with a 16k RAM-Pack>

This word places the amount of memory currently
available to the system onto the stack.

DECIMAL MEM • <NEW LINE>
14976 OK <This is the memory available to a

16k system at power-up>

This will display all FORTH words currently found
in memory.

This will put on to the stack the current address
of the stack pointer.

This word takes a number from the stack and
reserves that many bytes in the dictionary.

0 VARIABLE Vt 22 ALLOT <NEW LINE>
OK (When executed, Vl will now place the
low address on the stack, of a 24 byte block of
RAM in the dictionary which could be used for
arrays or character strings, etc. 22 bytes were
reserved by ALLOT and 2 were reserved by VARIABLE
to give 24 in total.)

<SHIFT/E) This fetches the value at the
memory location addressed by the top stack item,
and places it on the stack.

A practical example might be :

30 +ORS @ (30 +ORS references the
address of the system variable that stores the
start address of the display buffer, which is
usually FD00H>

<SHIFT/W) This word stores the second stack
item in the memory address specified by the top
stack item.

HEX 32 FD00
OK

<NEW LINE>

This puts an "R'' in the upper left hand corner of
the video display in a 32k or less system.

Memory Commands & Memory Manipulation Section 9-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 34

X81-FORTH does not guard against you storing values in dangerous
areas, such as the system variables, so be careful to store only
in free memory.

?

+!

C!

C@

COPY

I'IOVE

addr +!
n

Fetches and displays the contents of the address
on top of the stack.

V1 ? <NEW LINE> <If V1 is a variable, ? will
print its contents.>

Increments the contents of the raellOr'y location
addressed by the top stack item, by the second
stack itetB.

25 V1 +! <This will add 23 to V1>

Stores a one byte item into the 1 ocati on addressed
by the second item on the stack.

b addr C!

Fetches a one byte it.. froat the location
addressed by the top stack item and places it onto
the stack.

addr C@ b

This copies one screen of information <512 Bytes>
to the address on top of the stack from the
address found as the second item on the stack.

addrl COPY
addr2

0 VARIABLE SCR1 510 ALLOT <NEW LINE>
FBUF SCRl COPY <NEW LINE>

This wi 11 store the contents of the editor screen
into a memory buffer called SCRl. To recall that
information all you have to do is type SCR1 FBUF
COPY <NEW LINE>

This NDr"d is used to move blocks of memory around
the system. It will take 3 items from the stack.
The first is the number of NDr"ds (2 bytes) you
want to move, the second is the destination
address, and the third is the source address.
A routine which will do the same thing as the
example for COPY above is :

FBUF SCRl 256 I'IDVE <NEW LINE>
contents of the editor screen and
SCR1. 256 Nards is 512 bytes.

This takes the
moves it to

Memory Commands & Memory Manipulation Section 9-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 35

FILL This word is used to ~ill areas ~ memory with a
speci~ied byte. The FILL word takes three items
~rom the stack. The ~irst is the byte which is to
~ill memory, the second is the number o~ bytes to
be ~illed, and the third is the starting address
o~ the area to be ~illed.

FBUF 512 14 FILL <NEW LINE> Will ~ill the
edit screen with dots. <Using Sinclair~s non-ASCII
character codes.>

BLANKS This word is just like FILL but it ~ills memory
with e~s and only uses two items ~rom the stack.

FBUF

+ORS

D!

D@

PAD

addr D!
nlow
nhigh

FBUF 512 BLANKS Will blank out the editor
screen. <Using Sinclair~s non-ASCII codes.)

This is an INTEGER value which contains the base
address ~ the display bu~~er. To access the
display bu~~er all one needs to do is type FBUF
and the address o~ the display bu~~er will be
placed on the stack. To change FBUF all you need
to do is put the new bu~~er address onto the stack
and type TO FBUF.

Adds the item ~ound on the stack to the address ~
the beginning ~ the system variables and is most
commonly used to access the system variables.

Stores a 32 bit number at the address ~ound at the
top o~ the stack.

Fetches the 32 bit number ~ound in the 1 ocati on
addressed by the i tet~t at the top ~ the stack.

addr D@ nhigh
nlow

Execution ~ this word places the address ~ a 64
byte scratch-pad on to the stack. This pad aay be
used ~or temporary storage by the USIII"". The PAD
will overlay other parts ~ ZXB1-FORTH i~ the 64
byte limit is exceeded,. so be care-ful!

Memory Commands & Memory Manipulation Section 9-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 36

10.1 Data Types

ZXB1-FORTH as you probably realise by now operates on either 16
bit or 32 bit integers. There are operators for both types of
numbers. Integers are one type of data, Nhile another type is
character data. ZXB1-FORTH characters are standard ASCII
characters and can be found in Section 12.5. On some systems
floating-point numbers are included. For space reasons, ZXB1-
FORTH does not include floating-point arithmetic, but an
extension ROM will be available.

Data Types Section 10-1

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 37

10.2 Variables

VARIABLE is used to create a variable which references a memory
location used to store twa bytes of information, usually a value.
When ever the variable so created is executed, the address of
that variable is placed on the stack. An initial value is always
assigned to the variable when it is created, and this value can
be changed at will.

value VARIABLE varname

value • the initial contents of the variable.
varname • is a name chosen by the progra...,-.

0 VARIABLE AVS <NEW LINE>
OK (0 is the initial value and AVS is the name>
AVS @ . <NEW LINE>
0 OK <AVS places the address of AVS on the stack, @ gets

the contents and • prints it to the screen)

The user can also create 32 bit variables using the word 2VAR.
This creates a 4 byte variable, and behaves the same way as the
other variable.

Variables Section 10-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 38

10.3 Ini:egers

INTEGER This word is very much like variable. It creates a
2 byte variable in the dici:ianary, bui: instead of placing the
address of the variable on the stack, it places the actual value.

value INTEGER intname

100 INTEGER INT1 <NEW LINE>
OK <Here Mil have created an integer variable

with an initial value of 109)

In ZX81-FORTH, the Nard INTEGER behaves identically to the Nard
CONSTANT in oi:her FORTH" s. It has been used to keep variables
because of the space saving such a .a1:hod allows.

TO All DNS the user ta change an INTEGER value.

3 TO BASE changes BASE"s contents ta 3

Integers Section 10-3

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 39

10.4 Arrays

Arrays can be created in FORTH just. as t.hey can in BASIC,
FORTRAN, or other languages. First., space must. be allocated in
t.he dictionary.

0 VARIABLE VAL 22 ALLOT <NEW LINE> This will
create a variable called VAL. It. t.hen gives VAL an initial
value of 0 and reserves 22 addi t.ional bytes far it. in t.he
dictionary. This gives VAL t.ha capacity t.o hold 12 16 bit
numbers (24 bytes).

To access any 2 byte value in the array put the array item you
wish to access on to the stack and use the following com.ands.

2* VAL + @ <NEW LINE> This will access the proper
array value by doubling the index, adding it to the address,
and fetching the proper number from that address.

This is not. the only way to construct arrays. A mare ~ficient
and elegant. way is t.o use the <BUILDS ••• DOES> construct. This
method will be shown in Section 14.2. As data structures,
arrays are of fundamental importance in implementing solutions ta
programming problems.

Arrays Section 10-4

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 40

11.0 Control Structures

Unlike other FORTH versions, ZXBl-FDRTH allows the user to use
the IF ELSE • • THEN and the • • • DO • • • LOOP and the other
statements outside o~ a colon-de~inition. It does this by
creating a headerless word which executes immediately.

IF •• ELSE •• THEN This is a special structure used to

stack.
between
<~alse)

create logical branches. IF checks the top entry on the
I~ the top stack entry is non-zero, <true> the code
the IF and ELSE is executed. I~ the top entry is zero,

the code between the ELSE and the THEN is executed. For
example :

1 IF •• TRUE • ELSE • " FALSE " THEN <NEW LINE>
TRUE OK <The words between IF and ELSE is executed.)

0 IF " TRUE " ELSE • " FALSE " THEN <NEW LINE>
FALSE OK <The words between ELSE and THEN is executed.>

IF THEN This is a simpler construct than the IF
ELSE THEN construct. This statement allows the execution ~
code i~ the value on the stack is non-zero <true). Another
example :

1 IF 1 1 + • THEN <NEW LINE>
2 OK This displays the addition ~ 1 and 1,

because the test is true, having ~ound a zero value on the stack
be~ore the IF. I~ the initial stack value were zero the coda
waul d not be executed.

DO •• LOOP The DO LOOP uses the top two indicies on the
stack ~allowed by executable code within the DO and LOOP words.

The
less
word

limit initial DO •• code •• LOOP

limit a the upper limit 0~ the loop count.
initial • the lower limit o~ the loop count.

index is incremented by one
than the limit. The value o~
I.

For example :

9 0 DO I . LOOP <NEW LINE>
0 1 234567 8 OK

~rom the initial value to one
the index is accessable via the

should be displayed. Note that
the upper limit 9 does not get
executed.

Control Structures Section 11-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 41

DO
increment
this :

+LOOP This construct allows the user to
or decrement the count by any value and it 1 oaks

limit initial DO •• code increment +LOOP

limit ~ is the upper or lower limit for the loop count.
initial = the value where the count is started.
code = any FORTH word or Nards.
increment = any positive or negative value.

-5 0 DO I • -1 +LOOP
0 -1 -2 -3 -4 OK

<NEW LINE>

like

LEAVE This terminates the loop at the next LOOP or
+LOOP. It could be used in an IF THEN clause.

For nested loops a second index is available, the index J. For
further nested loops, the NI index can be used.

0 NI corresponds to I
1 NI corresponds to J
2 NI would correspond to the next index and so on.

CASE is most often used in a definition, however it can
also be used interactively on the execution screen. The command
format is as follows :

CASE e0 e1 e2 e3 e4 ; (2 or more statements may be used>

STACK VALUE
0

EXECUTION PRIORITY
e0

1 el
2 e2
3 e3
etc. etc.

The statement at e0 is executed when the stack value before the
CASE has a value of 0, e1 when the stack value is 1, etc. el •ay
be a FORTH definition, or any mathematical expression. To test a
CASE type :

2 3 <NEW LINE>
OK
1 CASE * + ; • <NEW LINE>
5 OK

Control Structures

<this will execute the +>

Section 11-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 42

BEGIN •• code •• AGAIN This statement will execute
any code ~ound between the BEGIN and AGAIN words. When AGAIN is
reached control is trans~erred to BEGIN and the code is executed
again thus creating an in~inite loop.

BEGIN n HELLO n CR AGAIN <NEW LINE>
HELLO

and will print out

HELLO
HELLO
HELLO

Hello's will continue to be printed to the bottom o~ the screen,
and then the print will continue by scrolling.

On most
way to
reload,
to the
task!!

machines that will be the end o~ the matter, as the only
restart FORTH would be to switch o~~ the machine and
but in ZXB1-FORTH a SHIFT/SPACE (break> will return you
normal keyboard. This because the keyboard is a system

BEGIN •• code •• flag UNTIL

code = any FORTH word or words.
flag = a logical operation which leaves a true or false

value on the stack which is tested by UNTIL. I~ the
~lag is true, (non-zero) the loop is terminated,
otherwise the execution flow returns to BEGIN and
carries on through the loop again. For example :

0 BEGIN 1 + DUP DUP • 9 ~ UNTIL <NEW LINE>
1 2 3 4 5 6 7 8 9 OK

This routine takes the top stack value, <initially a 0>
increments it by one, duplicates it twice in order to save the
value before displaying it, and then it performs the logical
operation, a comparison to 9. In this case the 9 is printed out.
This is done because the FORTH statements are executed before the
UNTIL checks the top value of the stack against the 9.

BEGIN •• WHILE •• REPEAT
is as follows :

The construction ~ this word

BEGIN words •• test WHILE •• words •• REPEAT

words = can be any FORTH word or words.
test = is a logical operator which leaves a true or false

value for WHILE to test.

For example :
BEGIN 1 + DUP DUP • 5 > WHILE '' END " REPEAT <NEW LINE>
0 1 2 3 4 5 6 END OK

Control Structures Section 11-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 43

12.1 Character Stack

ZX81-FORTH is unique in that it has both number and character
stacks.

The character stack store bytes of ASCII code and provides a more
efficient and convenient method for storage and manipulation than
a parameter stack on its own. The stack pointer for the character
stack can be found in the system variable located at address FC84
hex. ZX81-FORTH uses the IV register of the CPU to hold the
parameter stack pointer. These stacks are independant of each
other, but in order to make use of the character handling
routines of the system, character strings must maintain a certain
format. A character string consists of two parts : the string of
ASCII characters that reside on the character stack which
actually makes up the string, and a number which sits on the
parameter stack and is a count of how many characters that are
stored in the character string on the character stack.
Manipulating character strings is done through manipulation of
the numbers on the parameter stack which represent the length of
the character strings. For instance, to concantenate two
character strings into a single character string, all one needs
to do is add the two numbers on the parameter stack together to
generate a number which represents one composite character
string. Or simply put, a + concantenates strings.

Character Stack Section 12-1

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 44

12.2 Character Commands

String I/0

••

..

ABORT'"

CR

Defines the beginning of a string of characters to be
output to the screen. Any characters found between a ...
and a u Mill be placed into a character string and
output to the console device <the execution screen).
For instance :

: MESS • •• THIS IS A MESSAGE u ; Will print THIS IS A
MESSAGE to the console each time MESS is encountered in
a program or typed on the execution screen.

This works just like ." except instead of taking the
character string and outputing it to the console
device, the u Mill leave the character string on the
character stack to be manipulated either by another
routine or directed to another screen. The 1 ength of
the string Mill be found on the parameter stack
immediately after the " is executed. The parser
expects a space immediately after tne first u and does
not count it as a character. Both the ." and • use the
" as a delimiter to mark the end of the input character
string. Example :

." THIS IS A STRING " When placed in a definition or
in the execution screen will display the string between
the quotes.

•• THIS IS A STRING •• This Mill insert this string
in the character buffer with the number of characters
in the string placed on the parameter stack.

Checks a flag taken from the parameter stack and if the
flag is true <non-zero) then a user defined error
message is placed between the final " in ABORT 11 and a
warm restart is executed. This command could be useful
for displaying user defined error text in a program.
Example :

1 ABORT"' ERROR 10 11 <NEW LINE)
ERROR 10 OK

0 ABORT" ERROR 10 • <NEW LINE)
OK

Is used to print a carriage return, line feed on the
console screen.

Character Commands Section 12-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 45

SP Will print a space to the console screen.

CLS Will clear the console screen.

EMIT

KEY

S@

W!

...

This word is used to take an ASCII character from
parameter stack and output it to the console screen.

Calls a routine which will get a value fro•
keyboard and put the ASCII value of that key onto
parameter stack.

the

the
the

This word gets a word fro. the keyboard (ending with a
space or CR> and puts that token or string onto the
character stack.

This will taka a character string and store it onto tha
address found above the character count af tha string
on the parameter stack.

• I WILL PUT THIS IN THE PAD • PAD W! will put the
text into PAD. After the string is transferred to PAD,
what the melltDry image looks like is a single byte
character count followed by the character string. In
other wards, after executing the string above, typing a
PAD C@ will print out the nwaber af characters in
that string. C27 in this case) •

Will take an address fro. the par.-.tar stack and fetch
the character string stored at that addr.ss. It places
the character string itself onto the character stack
and the number of characters in the character string
onto the para.eter stack.

PAD W8 CO .w CNEW LINE> will print the character
string found in PAD out to the screen console •

• w Allows output of a string to the console screen, editor
screen, or any other user da-f i ned sc:rllltn. The comatand
expects to find the string on the character stack with
the nua.ber af characters an the para-ter stack and
must be preceded by a valid screen idantifier.

On the execution screen enter the following 1

• THIS IS A STRING • CNEW LINE>

To display this to the console screen <the ex.cution
screen) type :

CO .W <NEW LINE>

Character Commands Section 12-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 46

To display this to the editor screen, type :

ED • W <NEW LINE> and to display to any
other user defined screen type 1

screen-identifier .W <NEW LINE>

• C This word fallows the same for ~~~at as • W but it MDrks
1 ike EMIT. It uses two numb.-s frota the paraaM~t.r
stack, the first is the screen identifier, the second
is the ASCII value of the character that you want to
output to the i denti f i eel screen.

.CN

CDROP

CDUP

This word is
output the
identifier.
output it to
TEXT • .CN

just like .W except that it always directs
console screen and so it needs no screen
.CN will then take a character string and
the console. A .• TEXT • is just like a •

This word drops a character string off of the character
stack. It assu~UtS that a character count is on the
parameter stack as is usual.

This word will duplicate a character string
character stack -.ach the same as DUP does
parameter stack •

on the
to the

• co Is used to take a character string fro. the character
stack and direct it to the keyboard input buffer just
as though that character string had been typed in on
the keyboard. This is used for a variety of things; one
of which comes to •ind is the dyna.ic self r­
scheduling of tasks. A simple exa.ple of how .CO MDrks
is 1

• VLIST • • CD <NEW LINE>
OK
YLIST etc. OK will take the character
string YLIST and direct it to the keyboard just as if
you had typed it.

Character Commands Section 12-2

ZXBl-FORTH Manual <C> 1983 DAVID HUSBAND Page 47

12.3 Character/Number Stack

There are a group of words in ZXB1-FORTH which use both the
number/parameter stack and the character stack. These word types
are described in this section. Remember that a character string
always consists of two things; a number on the parameter stack
which describes the length of the character string. and the
character string itself which resides on the character stack.

C>N

N>C

W>

This word removes one character from the character
stack and places that character~s ASCII value onto the
parameter stack. It will reduce the character count
which is on the parameter stack by one and place the
ASCII value of the character taken fra. the character
stack on top of the character count. If the character
string is empty this routine will leave the null
character count at zero and return a e ASCII value.

This does just the opposite of C>N. It takes an ASCII
character value off of the parameter stack and places
it onto the character stack. The character count for
the character string that the ASCII character will be
appened to. should be under the ASCII value on the
parameter stack. The character count will be
incremented by one to reflect the extra character on
the character stack.

This word is used to format character strings for
output. If you have a character string that is only 5
characters long and you want it to fill up eight spaces
when it is printed, you could do this simply by the
command B W>. This will take any character string of
seven characters or less and append enough spaces to
the beginning of it to make it eight characters long.
VLIST uses this to get all the words into columns. A
definition which will convert a number on the parameter
stack to a formatted three character long character
string and print it out could look something like this:

: .F * 3 W> CO .W ;

If you use .F instead of . all your numbers will be
printed out in at least 3 character long strings.

: TBL CLS 11 1 DO 11 1 DO I J * .F LOOP CR LOOP . ,
TBL is a definition which will generate a 10 by 10
multiplication table.

Character/Number Stack Section 12-3

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 48

H>A

A>H

u•

D*

Is useful when transforming HEX nibbles into ASCII
equivalent characters. H>A takes a number off the
parameter stack in the range 0-15 decimal and converts
it into its appropriate ASCII equivalent and leaves the
character on the parameter stack. A 13 H>A EMIT will
echo a D onto the execution screen.

Does just the opposite of H>A, it removes an ASCII
value in the range 0-9, A-F and leaves on the parameter
stack its HEX equivalent.

This is a word which is used to attempt to convert
characters in a character string to a number on the
parameter stack. Let's say that the character string
which represents 100 is found on the character stack,
by executing a >* the character string will be
converted to a 16 bit integer with a value of 100 and
it will be placed onto the parameter stack. This word
leaves a flag of 1 on the parameter stack above the
converted number if the conversion is successful,
otherwise the flag will be 0. If the conversion is
unsuccessful the character the character string will be
left unchanged and can be used to prompt the user for a
correct character string. A definition which would use
the full capabilities of this word follows :

: READ BEGIN .• ? • S@ >*WHILE
CR co . w • II IS NOT SOOD TRY ABA IN II REPEAT ;

This word
leave the
is good,
string and
input.

will prompt the user for input with a ? and
input number on the stack if the conversion
otherwise it will print out the original
ask for further input until a good string is

Does the opposite of >•, it removes a character from
the parameter stack and converts it into a character
string in the current base. The dot "." word uses * and
is defined as : • * CO .W ;

Is just like * but performs an unsigned conversion from
a 16 bit number to a character string. U. is defined as
: u. u• co .w ;

Is the double number version of *· D. is then defined
as : D. D* CO .W ;

Character/Number Stack Section 12-3

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 49

W=

S=

12.4 Character Comparison

Expects two numbers ~rom the parameter stack, both
should be addresses a~ character strings which are to
be compared character by character ~or equality. I~ the
two strings which are pointed to are equal, a 1 will be
placed on the parameter stack; i~ the two are not
equal, a 0 will be placed on the stack. Both ~ the
addresses will be removed b~are the ~lag is le~t.

Takes an address ~~ of the parameter stack which
points to a string which is to be compared to the
character string an the character stack. This is much
the same as W= except that here one a~ the character
strings is on the character stack already. This routine
removes the address but leaves the character string on
the stack intact b~are it leaves the ~lag.

Character Comparison Section 12-4

ZXB1-FDRTH Manual <C> 1983 DAVID HUSBAND Page 50

12.5 Keyboard Allocations

Key

1
2
3
4
5
6
7
8
9
0
Q
w
E
R
T
y

u
I
0
p

A
s
D
F
a
H
J
K
L
NEW LINE
z
X
c
y
B
N

"
SPACE

Shi~ted Key

EDIT
AND
THEN
TO
<-.,..

1'
->
GRAPHICS
RUBOUT
nn

OR
STEP
<=
<>
>=
$
(

)
II

STOP
LPRINT
SLOW
FAST
LLIST

**
+ ..
FUNCTION
:
;
?
I

* <
>
,
BREAK

Keyboard Allocations

Shi~ted Key Function

Toggles between screens
Fetches a line ~rom PAD
Puts a line into PAD
Deletes a line ~rom the editor screen
l"'oves cursor le~t
11oves cursor down
11oves cursor up
l"'oves cursor right
Inserts a line on the editor screen
Deletes one character
Compiles an editor screen line
Store word. Displayed as
Fetch word. Displayed as @
[character

character
l character
$ character
< character
> character
" character
Clears the present screen
X character
" character
'\ character
..... character
* character

character
+ character
• character
Home cursor to top left corner.
: character
; character
? character
I character
* character
< character
> character
, character
WARI1 Restart, i~ held ~or 112

second COLD restart.

Section 12-5

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 51

p

PRTR

.P

PRINT

13.0 The Printer

Toggles the printer on or of~. I~ the printer routine
is on, any in~ormation that goes to the video display
will also go to the printer. As an example, to get a
listing of all the FORTH Nards presently in the
dictionary, type :

P YLIST <NEW LINE> This prints to both the
printer and the console>

PRTR is to the printer device as EMIT is to the console
device. By putting an ASCII value onto the parameter
stack you can output that character to the printer by
using PRTR. This works regardless of whether the P
toggle is on or of~.

This word is Nritten ~or the ZX-Printer or any other
compatible printer which is made explicitly ~or the
ZXB1. What it does is look ~or a character string in
PAD which is 32 characters long or less, and print that
line out on the ZX-Printer. The word will pad the rest
o~ an empty line out with spaces and print one co~lete
line out to the printer. It will not do anything with a
user d~ined printer routine.

• THIS IS A TEST u PAD W! .P <NEW LINE> will print

THIS IS A TEST out to your ZX-Printer.

Is used when you have some other ASCII compatible
device that you want your printer output to be directed
to rather than the ZX-Printer. The routine which you
write to inter~ace into must remove the ASCII value
~rom o~~ of the parameter stack and use it to output to
your printer device. As an example, let us say we have
an RS-232 card attached to our system and we have
Nl""i tten tNO routines to inter~ ace to that card. One of
them is a routine which will return only i~ the RS-232
card is ready to accept another character ~or output;
let us call this routine RS_READY. The other routine is
simply the routine which will place the address of the
RS-232 output port onto the stack, we will call this
one RS_ADDRESS. Now we can use these in the ~allowing
aanner to output characters through the RS-232 port
instead of the de~aulted ZX-Printer.

: RS_OUT RS_READY RS_ADDRESS C@ ; This will output
one character taken ~rom of~ o~ the parameter stack to
the RS-232 port.

PRINT RS_OUT This reassigns the printer output to the
routine RS_OUT instead of the d~ault routine.

The Printer Section 13-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 52

14.1 Colon / Semicolon

FORTH is different from many other languages in that it allows
the user to define his or her own words to extend the language.
The user can completely customise a set of words which can then
be used in any program.

The basic construct of colon definitions is

: wordname program ;

In ZXB1-FORTH ~wordname~ is compiled into the dictionary as a
word with a specific operation as defined after Nerdname and
before semi-colon. Try •••

: AVG + 2 / ;
OK

<NEW LINE>

Successfully typing the above word will define a word which
adds the top two stack items and divides by two. In other words,
AVG finds the average of two numbers. To execute this word, type:

2 4 AVG •
3 OK

<NEW LINE>

then put 4 on
by AVG, and
We will now

The above statement will put 2 on the stack,
the stack, then execute the commands as defined
~inally display the top stack ita. left by AVG.
define a word that takes the average of two sets o~
using AVG and then check to see if the averages are
will also print an appropriate response.

: EQUAL AVG ROT ROT AVG • IF
• • EQUAL • ELSE • • NOT EliiUAL. •
THEN ;

24 24 12 6 EQUAL
NOT EQUAL OK

<NEW LINE>

numbers by
equal. It

The two ROT c~ds here Ar'e i ncl udad to put
calculated by AYG on the botta. of the stack and the
numbers to be averaged on the top.

the value
next tWD

FORGET

FENCE

You can forget any word in the dictionary with
FORGET providing it is not protected by the FENCE
value. Simply type :

FORGET word <NEW LINE>

and the word along with any dictionary entries compiled
after ~word~ will be removed from the dictionary.

You can protect any word from FORGET by typing 1

FENCE word <NEW LINE>

Colon I Semicolon Section 14-1

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 53

14.2 : word •• <BUILDS ••• DOES> •• ;

This is one o-f the IDDSt important and power-ful FORTH
structures. With it you can de-fine new de-fining wards. What this
means is that you can create new types o-f de-fining words, and
using these words new types o-f data structures can be produced
and great power can be given to the programmer. The -format -for
this word is :

: new-de-fining-word <BUILDS de-finition code DOES> run-time code ;

de-fining-word a the name o-f the new de-fining word.
de-finition code = the code which is executed when the

de-fining-word is used to create a new word.
run-time code = this code is executed when the new word is

used as a command word.

It is possible in a <BUILDS DOES> construct to have no
de-finition code or run-time code. As an example•

: ARRAY <BUILDS 20 ALLOT DOES> ; Here is an example
o-f the construct with no run-time code. This statement will
allow the user to create arrays o-f ten words (20 ALLOT sets
aside twenty bytes in the dictionary, enough for ten 16-bit
variables>. ARRAY is now a compiling word which is a lot
like VARIABLE except that it reserves twenty bytes in the
dictionary for user variables instead of just two and also
uses no initialiser. An example o-f how to use ARRAY -follows:

ARRAY NUMBER <NEW LINE>

This creates an array called NUMBER which will reserve
twenty bytes for number storage in the dictionary. To access
these twenty bytes we need some way to re-ference them,
perhaps by placing the address o-f where they are found in
memory onto the stack. It just !5D happens that this is
exactly what executing NUMBER will do for us. NUMBER places
the address o-f the -first byte o-f the twenty bytes ALLOTed to
NUMBER onto the stack.

The program can be expanded as shown below. We will create a one
dimension array and will allow the user to access any number in
the array by placing an index an the stack.

: ARRAY1 <BUILDS 40 ALLOT DOES> SWAP 2* + ;

ARRAY1 is now a de-fining word which when used will create a
twenty word array. Let~s make one called XVI

ARRAY1 XVI <NEW LINE>

We have now created in the dictionary an array called XVI.
We can insert a number, say 123, into the 11th word in this
array by typing:

<BUILDS ••• DOES> Section 14-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 54

123 11 xvz <NEW LINE>

What has happened up to this point ? First, a 123 was placed
onto the stack. Second, the index 11 was placed on the stack, and
third, XYZ is encountered. XYZ ~irst places the address o~ memory
in the dictionary where the array is located and then initiates
the execution ~ the code ~allowing DOES>. In this case the top
two stack items are swapped <putting the index on the top and the
address below it). Next, we double the index with 2* because we
are dealing with 16-bit values and address memory in B-bit bytes.
The next thing we do is add the o~~set o~ the index to the
address already on the stack. A~ter this is done, the stack
contains the address o~ the indexed array member and the value to
be stored there. A store (!) will ~inally put the value in the
array.

Another routine could be written to ~etch values ~rom
the array and would look something like this :

11 XYZ @ <NEW LINE>

Sel~ Modi~ying Data Structures

A remarkable consequence ~ FORTH~s ability to d~ine new
de~ining words is that we may build ~intelligent~ data structures
; ~or example, arrays that automatically maintain averages, or
lists that re-order themselves whenever any entry is altered.

To take the ~irst ~ these examples, suppose we have a 10
element array ~READINGs~ d~ined using a word similar to XYZ o~
the last example. To ca.pute the arithmetic average o~ the
contents ~ this array requires adding together all 10 entries
and dividing by 10. A special d~inition could easily be written
to do this as ~allows:

: AVERAGE
0

<take average ~ array "READINGS")

11 0 DO
I READINGS @ +

LOOP
10 I ;

I~ our FORTH application needed us to calculate an average
this o~ten and ~or many di~~erent arrays then, to simpli~y
overall program, we should de~ine a new de~ining word *ARRAY
the averaging ~unction built into the DOES> part o~
de~inition:

like
the

with
the

<BUILDS ..• DOES> Section 14-2

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 55

: *ARRAY < ~special' array with running average >
<BUILDS

DOES>

DUP ,
0 ,
0 DO

0 ,
LOOP

DUP DUP@
SWAP 4 +
OVER 0 SWAP

000
OVER
SWAP

LOOP
SWAP DROP SWAP
OVER 2 +

(save array size)
< set ~average~ to zero >
< step through elements >
(d~ining and zeroing >

(get array size >
(paint to start of array)

(step through array)
@ + < add up >
2 + SWAP < bump up painter)

/ (divide by array size)
(stare average in element 0)

2 + SWAP 2 * + ; (calculate address)

Arrays defined by *ARRAY may be used just like those defined by
XYZ, far example :

10 *ARRAY READINGS

10 1 READINGS

20 2 READINGS

1000 10 READINGS

2 READINGS ?
20 OK

(readings(1)=10)

< readings<2>=20 >

< readings(10>=1000)

< print contents of readings<2> >

Which is exactly haw we would expect a 10 element array, with
elements numbered frDtn 1 to 10 to behave. But typing :

0 READINGS ? 103 OK

will print the average of the values currently cant•ined in the
array < (10+20+1000)/10 a 103>. This average will be calculated
afresh every time the name of the array 'READINGS' is executed
and will always be true however many times we might have altered
the values stared in the array.
Far example :

870 10 READINGS

:50 6 READINGS

0 READINGS ?
95 OK

< alter readings(10) to 870 >

(set readings(6) to 50)

< new average is 95 >

and, of course, ~!! arrays defined by *ARRAY will have this
function built in 1 1

<BUILDS .•• DOES> Section 14-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 56

[]

(

,

c,

HERE

H

T

HEAD

IMM

..

14.3 Operating System Words

This word is used to suppress the execution o~ an
immediate word in a dlriinition. The immediate word
which ~allows [_] will, i~ in a dlriinition, be compiled
to execute when the word being de~ined is executed and
not during the compilation ~ the word itsel~.

<Functionally equivalent to the FIG word [COMPILEl>

Any words placed in brackets will not be compiled and
will act as comments in your program. Anything entered
up to a ">• will be entered as a comment.

Stores the 16-bit number ~ound on the parameter stack
into the dictionary at the next available location.

This is like , but stores a byte into the dictionary
rather than 2 bytes <16-bits>.

This word places the address o~ the next
dictionary space onto the stack.

~ree

This places the address ~ the memory location which
contains the address o~ the next ~ree dictionary space
onto the stack.

Places the address o~ the memory location which
contains the tail pointer o~ the dictionary onto the
parameter stack.

Is used in creating new dlriining words. HEAD creates
the dictionary header o~ a word and links it into the
dictionary. HEAD generates no code ~ield and thus i~ A
word is created with HEAD and no attempt is .ade to
place behind it a code field, execution ~ that word
will crash the system. <Functionally equivalent to the
FIG word CREATE>.

When embedded in a de~ini tion, It11'1 makes that word an
immediate word and that word will execute during
compile time, i.e. in a colon de~inition. IMM is used
to customise compiler words which generate code a~
modify the dictionary without creating a header.
<Functionally equivalent to the FIG word IMMEDIATE> •

Attempts to ~ind the word following the character in
the dictionary. When found, the address ~ that word is
placed onto the stack.

"' 1'1* HEX •
B00 OK

<NEW LINE> The machine code which
makes up 1'1* start at 0B00
in memory. The "' is
SHIFT/D on the ZX81.

Operating System Words Section 14-3

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 57

15.0 Time ~ the System Clock

Computers, as you are no doubt finding, are very useful and
versatile tools which can do a surprising number of things. If
you have been around people who do not know a great deal about
these tools, you may have been asked : nwhat can your computer
really do ? Can it cook dinner or vacuum the carpet ? What good
is it if all you can do is stare at it ?• And these are good
questions. Well, of course it can help with balancing the cheque­
book, organising business information, generating mailing lists,
calculating taxes, writing out cheques, playing games, and any
number of other things, but there are a whole lot more things
that a computer cannot do at all well because computers, at least
in their simplest configurations, do not have eyes, hands, and/or
a sense of time. In short, computers cannot be told to do what
humans can do because they do not have the receptors and
manipulators that we humans have. Most small computer systems
also lack the ability to keep track of time.

It would be possible to give your ZX81 some nsensory''
devices or transducers which would enable it to, in a limited
way, perceive some things in its environment by attaching to it
input ports or AID converters etc. You could also give it hands,
so to speak, by attaching to it output ports which could control
something in its environment.

After having given your computer these things, it would
still be necessary to give it a sense of time in order to link it
to the way that the real world does things. For instance, if you
were collecting data in your house by monitoring the temperature
and using that information to control your boiler better, your
computer would, in all probability because of its speed, have the
ability to take a temperature reading once every 1/1000th of a
second. Now it is obvious that gathering this much information
would be useless and wasteful, but if you had a method of
restricting the data-gathering process to read a temperature once
a minute, the data you collected could be analysed more
rationally and the whole project could be given a sense of
orderliness.

The easiest way to give your computer a sense of time is to
give it a clock that it can look at every time you tell it to and
so enable it to make decisions about what to do and when to do
it. ZX81-FORTH has just such a clock. It is aaade up of a syste11
variable that is incremented every 1/S0th of a second and counts
from zero up to a limit that can be set to anything from 1/S0th
of a second to over two years. Both the clock itself <the system
variable that is incremented> and the period <the changable
limit> are made up of 32-bit integers which can be accessed by
the two words :-

Time & the System Clock Section 15-0

ZX81-FDRTH Manual <C> 1983 DAVID HUSBAND Page 58

TIME Which will place the address of the system variable
which contains the clock count for the system. This
variable is a 32-bit integer value which is incremented
each clock tick (1/50th sec> and continues until it
reaches the limit set by the system variable accessed
by the word PER. Upon power-up, this variable will
default to zero. In order to see the nwaber of ticks
since the computer was switched on type :

TIME D@ D.

PER Will place the address of the 32-bit system variable
containing the limiting value to which the system clock
counts. It is through this variable that the syste.
clock is given its overall period. This variable
defaults to a count that represents 24 hours or one
day.

Two examples of how to use the clock are given here. The word SET
is used to set the clock with the current time and the word RTIME
will enable you to display the time of day.

: READ BEGIN .u ?u S@ >*WHILE CR CO .W II BAD 11 REPEAT J

: SET • II HOUR"" READ TH • II MIN"" READ TM II SEC11 READ TS D+ D+
TIMED! .u DONE 0

;

: RD 60. D/ SWAP DROP ROT ROT ;

: CPT TIME D@ RD RD RD SWAP DROP J

: COL * C>N DROP 2 W> • : • + I

: RTIME CPT COL C>N DROP .• CN COL .CN COL .CN DROP ;

: TIME-DIS CLS BEGIN 13 EMIT RTIME AGAIN ;

The word READ is used to input one number to the stack much like
an INPUT would be used in BASIC. The • 11 ?• outputs a prompt to
the screen. The S@ reads a character from the input buffer <the
keyboard), and the >* attempts a conversion. If it converts to a
number ok, control will then pass out of the READ word and return
with a valid number on the stack. If not the CR CO .W etc., will
echo the rejected character and return to the start of the loop.
The SET word prompts for input with an HOUR? and after a number
has been input it runs TH which multiplies the 16-bit number on
the stack by the number of ticks in an hour and leaves the result
as a double number on the stack. The same is done for the •inutes
and seconds leaving three double numbers on the stack which are
then added together with the D+~s and deposited in the master
clock variable with the TIMED!. After it is all done it tells
you by saying DONE.

Time & the System Clock Section 15-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 59

The RD routine reduces a double number by dividing it by 60.
It leaves the double quotient on the top of the stack and a 16-
bit remainder under it. The CPT routine gets the 32-bit time from
the computer master clock and runs it through the RD program to
leave the ticks, seconds, and minutes on the stack. It then
reduces what is left, the hours, to a single nu.ber, so CPT
reduces the time to hours, minutes, seconds, and ticks on the
stack. COL converts a number to a character string three
characters long with a colon in the first location. RTIME puts
the other routines together and displays the time in the format
HH:MM:SS to the console. TIME-DIS just displays the time over and
over in an infinite loop.

Time & the System Clock Section 15-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 60

16.0 Tasking

ZXB1-FORTH is ~undamentally di~~erent ~rom most other small
computer operating systeas in that it allows the user to task
programs. Tasking is the act ~ scheduling a program to execute
at some time in the ~uture. Any program can be scheduled in a
task, you can run approximately ten tasks simultaneously in the
background b~ore the system will slow down so much as to be
useless in editing new programs. <Tasks use valuable processor
time which is usually spent in editing new programs). How much
the system slows down depends on what and how o~ten tasks are
run.

Tasks are set up in this way :

TASK task-name program-name

where program-name
task-name becomes
de~ining. At this
yet been scheduled

Scheduling Tasks

is any word which exists in the dictionary
the name associated with the task you

stage the task has been de~ined, but has
to execute.

and
are
not

The user can schedule a task to run using the IN, EVERY, AT
words. The time interval used can be :

IN

TT Task Ticks (1/50th second)
TS Task Seconds
Tl"' Task Minutes
TH Task Hours
TD Task Days
TW Task Weeks
TV Task Years

Task identi~ier used to schedule a task to execute
a~ter the speci~ied time has elapsed.

EVERY This word is used by the task scheduler to schedule a
task to execute repetively using the period speci~ied.

AT Task identi~ier used in conjunction with the systetB
clock to calculate the time existing between the
current time and the time speci~ied during scheduling
so that the task will execute IN the appropriate time.

START This word directs the task scheduler to clear the task
over~low ~lag, the task execution ~lag, and the task
execution queue to allow scheduling to continue.

Tasking Section 16-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 61

STOP

RUN

This word will set the task schedule overflow bit which
in effect stops the task~s execution and scheduling.

Will increment the task execution queue if the overflow
bit has not been set. The net effect is to schedule the
task to execute the next clock tick if no other higher
priority task is executing.

The format for task scheduling is :

command number time-type task-name

TASK TASKl program-name

EVERY 5 TS TASK!

This schedules the task TASKl to execute every 5
seconds.

IN 10 TM TASKl

This schedules the task TASKl to run in ten minutes. So
now TASKl is scheduled to execute every 5 seconds after
ten minutes. The system will automatically start
scheduling this task upon the execution of this
command.

To terminate the execution of a task the STOP command is
used. The format of this command is :

STOP task-name <NEW LINE>

To restart a task you must reschedule it, or if it has
already been scheduled you can use the START command.

Tasks may also be forgotten just as any other FORTH word.
This is possible because every task is a word in the dictionary.
This means that FORGET task-name <NEW LINE> could be used to
stop the task as well, however, the task could not·subsequently
be rescheduled because the task definition would no longer exist
in the dictionary.

ZX81-FORTH also allows a task to be run without scheduling
it. This would be useful in debugging a task to ensure that it is
running properly. The command is :

RUN task-name <NEW LINE>

Before we deal with the word START, lets ask a question.
What would happen if your task was extremely long ? That is,
say, the task took longer than one second to execute and yet was
scheduled to execute one per second. In a case like this the task
would be rescheduled before it was completed, and the system

Tasking Section 16-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 62

would eventually lock-up. A single task can be "back-scheduled•
63 times before the system would lock-up.

Now back to START. START clears the task register of •back­
scheduled" tasks and will unlock a lock-up task. This has to be
done for each task at a time and the command format is :

LOCK

UNLOCK

START task-name <NEW LINE>

Prevents all tasks from running. Tasks are still being
scheduled to execute during a LOCK condition, but
whatever program is being executed when LOCK is
executed will gain second to highest priority in the
system <second only to the master 1/50th second task>
and will not be interrupted by any other task.

Allows tasks which have been LOCKed out to begin
executing.

LOCK should be run only for a very short period of time.
This word locks all lower priority tasks from running. If the
LOCK to UNLOCK time was longer than the time the lower priority
task was scheduled to execute in, then the lower priority task
would be queued-up. LOCK does not stop the scheduling of tasks to
be run, it only stops their actual execution. Therefore, the
possibility exists for a task to completely fill it~s queue
buffer (63 scheduled executions>, and upon UNLOCKing the tasks,
the task with the overflowed queue would be blocked from running
and could only be released by a START.

TOFF

TON

This word resets a system flag so that upon the
execution of a WARM restart the following items occur :

Causes a LOCK all tasks
Sets the background task to a null task
Forces the display to SLOW mode

TOFF is the default state upon power-up.

Disables TOFF and allows scheduled tasks to execute
after a WARM restart.

It is also possible to link in a short program to run
continuously in the background. A program linked in such a way
will execute any time that there is nothing else going on in the
system and in effect has the lowest priority of any program in
the system. Programs which are put into the background must not
output any information to the console or request any input from
the keyboard buffer. If a background task does, there is a high
likelihood that the system will not work properly. Background
routines can schedule higher priority tasks to run and can access
any of the system variables just as other routines in the system
can, but the background routine must execute quickly, in the

Tasking Section 16-0

ZX81-FDRTH Manual <C> 1983 DAVID HUSBAND Page 63

order o~ 1/10th second or less, or the system~s overall
per~ormance will deteriorate. Remember, though, that i~ the
system slows down by 507. it will still be many, many times ~aster
than ZX81 BASIC!!

BACK

NUL

Is used to link in a user routine into the background.
BACK program-name <NEW LINE> will make ~program­

name~ part o~ the background activity.

Is a program which does nothing. It is used to swap out
non-empty tasks ~rom the background. BACK NUL will put
the de~ault null task into the background.

Try this :

: A u THIs Is A TEST II CR ;
TASK B A
: C RUN B ;
BACK C

This program will take A, a program which prints out the
1 ine '"THIS IS A TEST" and attach a task '"B" to it. The program
•c", when executed, schedules B to execute immediately. C is then
put into the background so that any time the system is doing
nothing it schedules it to do something, namely execute A. To
stop the message ~rom printing continuously to the screen just
hit SHIFT/SPACE momentarily. This will execute a WARM reset which
automatically resets the background task to NUL.

One o~ the most use~ul tasks to run is a set ~ routines to
print out the stack contents on the bottom line o~ the screen.
The entire program should be typed on the editor screen. Then
switch to the console screen <SHIFT/EDIT> and type CPL to compile
the entire editor screen.

HEX CLS 16 CD 5 + C!
0 17 1F 17 SCREEN ST ST REV
: SCL 0 C N>C ST .W ;
: STD * 5 W> ST .W ;
: ST4 4 0 DO 4 I - PICK STD LOOP ;
: STE SCL ST4 FA7E SP@ - 2/
II SP = II ST • w STD ;
TASK STK STE
EVERY 1 TS STK DECIMAL

What is happening ? The ~irst line clears th'e console screen.
The second line creates the reverse video display line at the
bottom o~ the screen. The screen name is ST (~or stack screen>.
The SCL word is a screen clear command. STD is a screen display
word. Finally, ST4 is the word which displays the top 4 stack
values. STE stands ~or stack execute, this being the execution
part o~ the code. The routine clears the screen <SCL>, then
displays the top 4 items <ST4>, then gets the stack pointer value
and displays it. Lastly, the ~inal statement is a task which
schedules the word STE as a task called STK, once per second.

Tasking Section 16-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 64

The most useful applications of multi-tasking are in
conjuction with various types of I/0 <Input/Output>~ where the
power of the computer can be used to control things and events in
the outside world. In fact you could say that the whole future of
computers as controllers is in that sort of role.

Any demonstration of tasking without employing l/0 can tend
to be trivial, and an impressive demonstration of tasking can be
carried out using the console screen as follows :

If you set bit 8 of the screen byte it will reverse the
video of that particular part of the screen. The word BYTE will
do this and it also incorporates an offset so that an index can
be applied.

. BYTE DUP FBUF + @ 128 XOR SWAP FBUF + ! ; .
: CURSOR1 0 BYTE . : CURSOR2 2 BYTE . , ,

: CURSOR3 4 BYTE ; . CURSOR4 6 BYTE ; .
. CURSORS 8 BYTE . : CURSOR6 10 BYTE . . ~ '
TASK TASK1 CURSOR1 EVERY 2S TT TASK1

TASK TASK2 CURSOR2 EVERY 2S TT TASK2

TASK TASK3 CURSOR3 EVERY 2S TT TASK3

TASK TASK4 CURSOR4 EVERY 25 TT TASK4

TASK TASKS CURSORS EVERY 2S TT TASKS

TASK TASK6 CURSOR6 EVERY 2S TT TASK6

This produces a very graphic illustration of the multi-tasking
capabilities of ZX81-FORTH effectively g1v1ng a number of
flashing cursors on the top line of the console screen.

Tasking Section 16-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 65

17.0 The CODE compiler

This section describes how machine code can be compiled. The
advantages o~ writing in machine code are an increased execution
speed and more compact programs in terms o~ memory space used.

Machine code is a term re~erring to the type o~ numbers the
Z80 microprocessor inside the ZX81 will recognise. In reality, it
will only see combinations o~ 0~s and 1~s organised into data and
instruction codes. It would be easier to deal with these numbers
in terms o~ HEXADECIMAL, which is method by which each group a~ 4
bits is assigned a character between 0 to 9 and A to F. Now, it
would be very, very di~~icult to remember what every HEX number
did inside a~ the Z80, so every operation is represented
symbolically by a nmemonic. In is common practice to write source
code in these nmemonics and then convert the nmemonic to the
proper HEX number either by hand or with the aid a~ an assembler.

First, the CODE compiler will be described, and then an
example a~ its use will be given. The CODE compiler has the
~allowing ~ormat :

CODE ••• hex code ••• ;c

The above example shows the CODE compiler outside o~ a
de~inition. It could also be used inside a colon de~inition. The
CODE compiler places code at the current head pointer in the
dictionary. Inside a de~inition you can have as many words as you
want be~ore CODE and a~ter the ;c. Here is an example :

A machine code routine can be created to add the three
numbers ~ound on the parameter stack and to put the result back
onto the stack. We will use the HL and DE registers ~or this, but
~irst a little background in~ormation.

ZXBl-FORTH supports commands ~or putting numbers onto the
parameter stack and removing numbers ~rom the parameter stack. To
remove a number ~rom the stack all you have to do is execute a
Restart 2 instruction <D7 hex>. This instruction takes the number
o~~ the parameter stack and places it into the HL register pair.
From there on you can use it in a machine level CODE d~inition.
To take a number ~rom the HL register and place it on the
parameter stack you must execute a Restart 1 instruction <CF
hex>. Now let~s write the routine :-

ES PUSH HL
DS PUSH DE
D7 UPOP

EB EX DE,HL
D7 UPOP
19 ADD HL,DE
EB EX DE,HL

The CODE compiler

;
;
;
;
;
; . ,
;

This saves the contents o~ HL and DE
by placing them on the processor stack
Takes the top stack item and puts it
into HL
swaps the contents a~ HL and DE
Puts the 2nd item into HL
Adds HL & DE and puts the result in HL
Move answer a~ first add

Section 17-0

ZX81-FORTH Manual

D7
19

CF
D1
E1

UPOP
ADD HL,.DE

UPUSH
POP DE
POP HL

<C> 1983 DAVID HUSBAND Page 66

; Gets third number from stack
; Adds the 3rd number with the sum of
; first two
; Puts result back onto the stack

; Restore registers

No return instruction is required as
inserted by the outer-interpreter or the
colon definition.

this
a a II

"
is automatically

at the end of a

In order to enter this code in the dictionary under the word
"3+" the correct programming format would be :

word.

: 3+ CODE E5 D5 D7 EB D7 19 EB D7 19 CF D1 E1 ;c ;

To execute 3+ place 3 numbers on the stack and use the new

1 2 3 3+ •
6 OK

<NEW LINE>

3+ adds the three numbers and replaces the sum, 6, onto the
stack prints the top stack item.

The CODE compiler Section 17-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 67

18.0 Applications

A de~inition o~ the FIG word SP! to reset the stack would
be :

: SP! CODE FD 2A 90 FC ;C ;

A very useful routine follows and it this does the same
thing as the READ AS statement in BASIC.

: READ II INPUT REQUEST •• S@ ;

This gets a string from the keyboard and places it on the
character stack. To display the result, type :-

co .w <NEW LINE>

Here is a program to convert degrees Fahrenheit to degrees
Centigrade. First, let us read in a variable :

: READ 11 ENTER DEGREES FAHRENHEIT 11 CR •• ? •• S@ ;

Next a word to convert the string to a number:

: INPUT READ)# DROP ;

># converts the top o~ the character stack to a number. We must
drop a number because the conversion leaves a flag. Next is the
actual conversion routine.

: CEL 32 - 100 * 9 / 5 * 100 / ;

Note that the value must be scaled by 100 before performing the
division. A later division by 100 is needed to bring the result
back to its original scale.

: PRNT • 11 DEGREES CENT I GRADE •• . . '
: CELS BEGIN INPUT CEL PRNT CR CR AGAIN ;

To run the whole program type 11 CELS" and respond to the prompts.

Applications Section 18-0

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 68

19.1 Any problems?

We are very anxious to ensure that you are satisfied with
your FORTH software, so we hope you will feel free to contact us
should you have any problems or queries.

We would prefer you to ring us on Bournemouth (0202> 302385
between the hours of 5pm and 6pm, Monday to Saturday so as to
allow our work to continue un-interrupted.

Any p~oblems ? Section 19-1

admin
Rectangle

admin
Rectangle

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 69

19.2 Acknowledgements

The FORTH language was originally publicised by the

FORTH Interest Group
P.O. Box 1105
San Carlos
California
CA. 94070 USA

FIB UK can be found at

C/0 Honorary Secretary
15 St Albans Mansion
Kensington Court Place
LONDON WB 5QH

ZXB1-FORTH is based on TREE-FORTH by Bob Alsum of Tree
Systems Inc of the USA.

Acknowledgements Section 19-2

ZX81-FORTH Manual (C) 1983 DAVID HUSBAND Page 70

19.3 Copies

ZX81-FORTH is the copyright property of David Husband trading as
Skywave Software and all rights are reserved. ZX81-FORTH is
supplied on an "as is" basis, with no warranty, specific or
implied, attaching. No liability will be accepted for
consequential loss or error. Any faulty media will be replaced
free of charge.

This does not however affect any consumer rights under
existing legislation.

Copyright of all software remains with the original authors.
"Skywave Software", "Skywave", and the Skywave logo are
Registered Trademarks.

We would ask you, therefore, not to make,
made, copies or give copies to any third party
etc.> or to sell copies.

or permit to be
<your friends,

We hope you wjll agree with us when we way that it is only
by Software Vendors, such as ourselves, making a reasonable
return on our efforts, that the quality of the software marketed
will improve and prosper. You must realise that it if piracy is
rife the best software will never be put onto the market and
prices will remain high. We ask your co-operation in ensuring
that this product is not abused in this way.

Copies Section 19-3

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 71

20.0 Memory Map

FFFFH

FD00H

FAB0H

'

B000H

0000H

Video RAM

Parameter Stack

v

Dictionary Space

Extension RAM or
ROM

ZXBl-FORTH ROM

Memory Map

-> -->

PAD

FD00H
I Character Stack

FCC0H '----------------

FC40H

FBC0H

FBB0H

<FAB0H>
moveable

System Variables

System Editor
Stack

Keyboard Input
Buffer

System Execute
Stack

Parameter Stack

v

Section 20-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 72

A>H Page 48 D@ Page 35
ABORT" Page 44 D# Page 48
ABS Page 23 ED Page 13
AGAIN Page 42 ELSE Page 40
ALLOT Page 33 EMIT Page 45
AND Page 27 EOFF Page 12
AT Page 60 ERRORS Page 10
AUTO Page 14 EVERY Page 60
BACK Page 63 FAST Page 14
BASE Page 30 FBUF Page 35
BEGIN Page 42 FENCE Page 52
BLANKS Page 35 FILL Page 35
BLK Page 18 FORGET Page 52
<BUILDS Page 53 H Page 56
C= Page 28 H>A Page 48
C! Page 34 HEAD Page 56
c, Page 56 HERE Page 56
C@ Page 34 HEX Page 30
C>N Page 47 I Page 41
CASE Page 41 IF Page 40
CDROP Page 46 IHM Page 56
CDUP Page 46 IN Page 60
CLS Page 45 INTEGER Page 38
co Page 13 J Page 41
CODE Page 65 KEY Page 45
COFF Page 17 LEAVE Page 40
COLD Page 9 LOAD Page 16
COPY Page 34 LOCK Page 62
CON Page 17 LOOP Page 40
CONSTANT Page 38 MAX Page 23
CPL Page 12 HEM Page 32
CR Page 44 MIN Page 23
DHAX Page 29 MINUS Page 24
DMIN Page 29 MOD Page 24
D. Page 31 HOVE Page 34
D= Page 29 MD* Page 25
D0= Page 29 MD/ Page 25
D> Page 29 "* Page 24
D< Page 29 H/ Page 24
D->Q Page 31 N>C Page 47
DABS Page 26 NI Page 41
DECIMAL Page 30 NUL Page 63
DHINUS Page 26 OR Page 27
DO Page 40 OVER Page 31
DOES> Page 53 p Page 51
DROP Page 31 PAD Page 35
DSWAP Page 32 PAGE Page 18
DUP Page 31 PER Page 58
D+ Page 25 PICK Page 32
D- Page 25 PRINT Page 51
D* Page 25 PRTR Page 51
D/ Page 25 REPEAT Page 42
D! Page 35 REV Page 14

Word Index Section 21-0

ZX81-FORTH Manual <C> 1983 DAVID HUSBAND Page 73

ROT Page 32 + Page 22
RUN Page 61 +ORG Page 35
S@ Page 45 +LOOP Page 40
S= Page 49 +- Page 24
SCREEN Page 13 +! Page 34
SLOW Page 14 Page 23
SP Page 45 * Page 23
SP@ Page 33 *' Page 25
SP! Page 67 *I MOD Page 24
START Page 61 I Page 23
STOP Page 61 /MOD Page 24
STORE Page 15 = Page 28
SWAP Page 32 * Page 48
S->D Page 31 > Page 28
T Page 56 >* Page 48
TASK Page 60 -> Page 18
TD Page 60 < Page 28
TH Page 60 <-- Page 18
THEN Page 40 ? Page 34
TIME Page 58 ?DUP Page 31
TM Page 60 @ Page 33
TO Page 38 Page 33
TOFF Page 62 Page 31
TON Page 62 II Page 44
TS Page 60 .c Page 46
TT Page 60 .co Page 46
TW Page 60 .CN Page 46
TV Page 60 .CPU Page 8
U# Page 48 .P Page 51
UMOD Page 26 .w Page 45
UNLOCK Page 62 .. Page 44
UNTIL Page 42 [J Page 56
U/MOD Page 26 , Page 56
u. Page 31 :0 Page 56
U* Page 26
U< Page 29
VARIABLE Page 37
VLIST Page 33
W= Page 49
W! Page 45
W@ Page 45
W> Page 47
WARM Page 9
WHILE Page 42
XOR Page 27
0= Page 28
0> Page 28
0< Page 28
2DROP Page 31
2VAR Page 37
2* Page 23
2/ Page 23 . Page 52 .
; Page 52
;c Page 65

Word Index Section 21-0

Key

1
2
3
4
5
6
7
8
9
0
Q
w
E
R
T
y
u
I
0
p
A
s
D
F
s
H
J
K
L
NEW LINE
z
X
c
v
B
N
M

SPACE

Quick Keyboard Reference

Shifted Key

EDIT
AND
THEN
TO
<-

"' 1'
->
GRAPHICS
RUB OUT
II II

OR
STEP
<=
<>
>=
$
(

)
II

STOP
LPRINT
SLOW
FAST
LLIST
**

+
=
FUNCTION . .
;
?
I

* <
>
,
BREAK

Shifted Key Function

Toggles between screens
Fetches a line from PAD
Puts a line into PAD
Deletes a line from the editor screen
Moves cursor left
Moves cursor down
Moves cursor up
Moves cursor right
Inserts a line on the editor screen
Deletes one character
Compiles an editor screen line
Store word. Displayed as
Fetch word. Displayed as @
[character

character
J character
$ character
(character
> character
11 character
Clears the present screen
Y. character
" character
\ character
""" character
character

character
+ character
= character
Home cursor to top left corner.
: character
; character
? character
I character
* character
< character
> character
, character
WARM Restart, if held for 112

second COLD restart.

