
. I

LANGUAGES
ZX81FORTH

•••

An incredulous Dick Pountain found a way to do real-time multi-tasking
on a Sinclair ZX81 using Forth.

It seems like an age ago that we were all guffawing
over Uncle Clive's original ad. for the ZX81. Control a
power station indeed!. With that curious little sliver of
black plastic?

It's rather easy to forget when contemplating the
ZX81 that its diminutive case conceals a ZBO running
at 3.25 MHz, which gives it rather more potential pro
cessing power than some CP/M machines costing
thirty times more than its £50 price tag. What pre-

ma vents much of this potential being realised is lack of
memory and a ROM-based Basic interpreter which is
far from quick even in its Fast mode (and the way that
video output is handled doesn't help at all since 80
percent of the processor's time is consumed in
updating the screen if a continuous display is
required).

Shortage of memory plus lack of quickness? That
sounds like a job for ... Forth! (pause for snatch of
William Tall overture, galloping hooves). The ZX81
contains at least as much RAM and processor as
scores of Forth-driven controller boards, some of
which contain as little as 256 bytes of work
space.

ZX81-Fortfl, the subject of this review, is remark
able not because it is the first Forth implementation
for the ZX81 (that honour goes to Artie) but for the
features which it has contrived to include. The most
prominent of these is multi-tasking and real-time
programming; it is possible to have ten tasks running
simultaneous~ on a machine with the 16K expansion
RAM pack fitted. It also has a screen-oriented editor
and many interesting and innovative (hence non
standard) extensions, especial~ in the area of
character 1/0.

As wall as running very much faster than Sinclair
Basic, this Fonh turns the ZX into a potential real
time controller, though I suspect it is better
employed as a cheap way of learning about real-time
programming than to run Sizewell B.

Multi-tasking is necessary for real world control
jobs because, in the words of the sage, "time waits
for no man, let alone some dumb computer".ln other
words, things happen in the real world when they
feel like happening, not when it is convenient for the
computer. It avails naught to send a message to the
reactor saying "please don't go critical just now,
'cause I'm in the middle of updating the screen". A
real world controller must be able to give its attention
at all times to all the processes it is controlling, which
means that it must be able to do more than one thing
at once, and it must know what the time is too.

ZX81-Fortfl is written and sold by David Husband
of Poole, Dorset, who has considerable experience of
using Forth in instrument control applications via his

activities in amateur radio, and has previously
implemented a more orthodox fig-Forth system for
the Nascom. Some of the novel aspects of ZXB!
Fortfl are based on Tree-Forth, a US developed ver
sion which is used to drive a well known bulletin
board network.

INSTALLATION

ZX81-Forth is ROM based and is sold in an BK EPROM
which replaces the Sinclair Basic ROM. Depending
on your machine's vintage, this could involve you in
soldering work. The Basic ROM is replaced by a 28-
pin IC socket which accepts the Forth ROM. If you
don't have a ZX already, Husband has an arrange
ment with a Poole dealer who can supp~ ready con
vened machines (see Fact Sheet) for around the
nonnal ZXBl price.

A 16K RAM pack is required as minimum, but if
you have one of the larger ones ZX81-Fortfl will
automatically sense its presence and use the avail
able space.

Once the ROM is correctly installed the machine
comas up into ZX81-Forth on power up. The
functioning of the machine is altered in more ways
than mere~ a new language; the Sinclair character
sat is replaced by the standard ASCII one (no graphics
characters! and the keyboard now has on~ one shift

DATASHEET
NAME Of PlmlAM

ZX81-Forth
MANUFACTURER/COUNTRY OF ORIGIN

David Husband. UK
1\JRI'!WlYI'f Of FmGRAM

Multi-tasking programming
environment
COMPUTERS SUI'I'ORliD

Sinclair ZX81
MBJIUM ON WHICH SUPPIJBJ

EPROM
MINIMUM HARilNNIE ID IIJN

18KRAM Pack
PRICE Of PfllGRAM/MANUAlS pNC VAl)

£28.75
fFJIEW COPY OBTAINBJ F11JM

David Husband, 0202 784724

mode which gives the ASCII symbols. The internal
key codes remain Sinclair's though. The single stroke
keyword entry, which would hardly be appropriate for
an extendible language, is not retained.

One perhaps obvious point is that the extra typing
involved points up the inadequacy of the ZXBl
keyboard !which could have lost St Francis his
sainthood had it been invented) rather cruelly, so one
of those keyboard kits would be a useful extra
purchase.

IMPLEMENTATION

ZX81-Forth is a subroutine-threaded version of the
language. Without going into too many esoteric
details of how Fonhs jar more generally Threaded
Interpretive Languages! work, it is hard to explain
what this means. Very roughly it means that it com
piles source programs into a list of subroutine calls,
which are direct calls to executable machine code.
Most Fonhs compile into a list of addresses which
are then interpreted by an inner interpreter. The dis
tinction is almost that between a native code com
piler and one which compiles into p-code. What it
means is a speed improvement becauselX81-forth
doesn't need the inner interpreter. As it is ROM
based and entirely written in machine code !most
Forths are largely written in Fonh) the core of the
language cannot be modified at all, though the user
can of course add new definitions to the pan of the
dictionary which lives in RAM.

As BK is quite small even for a Forth implementa
tion, chunks of the fig standard have had to be left out
to fit in the extra code to do multi-tasking. Neverthe
less it looks very like fig-Forth in its essentials,
namely stack manipulation, arithmetic, memory
manipulation and control structures. It actual~ goes
beyond fig in having a simple but ingenious CASE
statement which is a defining word used in place of a
colon. I was able to run my Forth Benchmarks with
only one major modification due to the odd syntax of
BEGIN .. .WHILE. .. AGAIN which .acts like a switch
between the two code segments rather than as a
"one-and-a-half loop" as it should do. These timings
incidentally showlX81-Forth to be averagely fast for
a ZBO system, though they do not test some features,
such as screen handling, which are very fast indeed.
In practice it is likely to be mora than 50 times faster
than Sinclair Basic for many tasks.

The <BUILDS ... ODES> construct is included
so that the full flexibility of user-defined data struc
tures is available.

The major omissions are the lack of vocabularies,
which will not be much missed in a system this size,

Admin
Highlight

Admin
Highlight

Admin
Highlight

Admin
Highlight

and a reduced set of mass storage instructions to go
with the simple editor and cassene storage.

No Editor vocabulary is required as the editor is
always present, and no Assembler vocabulary is pro
vided; instead machine code may be freely intro
duced in line with Forth code using the words CODE
and ;C.

Arithmetic is very generous, with a number of
double and quadruple precision (64 bit) operations
provided as befits a system which is intended for
real- time applications. Floating point will be offered
later as part of an extension ROM.

The handling of string and character 1/0 is very
unorthodox and poses interesting questions for the
future direction of Forth. None of the words which
will be familiar to Forth programmers such as
EXPECT, QUERY, WORD or TYPE are given; instead a
separate character stack is used to hold string data
and a whole new set of words to manipulate it. A
most unexpected feature of these is that multiple
screens may be set up on the (32x24) video display,
each with independent scrolling jthough overlapping
Lisa style is not permined). Screens, defined by the
coordinates of their diagonal corner points, are given
names in the dictionary and then the word .W can be
used to write strings from the character stack to a
named screen. To display numeric information in
such a screen it must first be converted to string data
using one of several conversion words. Screens may
be switched between reversed field and "normal" ie.
black on white. Together with the multi- tasking and
the extremely rapid screen writing, this allows for
some very un-ZX-Iike displays!

This way of doing character 1/0 is very different
from any of the standard ways, which are more
machine oriented and regard strings as arrays of
bytes to be manipulated. The difference runs very
deep; although.z¥81-Folih has many standard words
!such as·: to print the stack top) they are all defined
using the character stack. ': works by converting the
stack top value into a string and printing it with .W
which is the more primitive operation!

FAST and SLOW modes are available as in Sinclair
Basic lin FAST the screen blanks while computation
is in progress) but an AUTO mode exists which blanks
the screen only if a process takes longer than a quar
ter of a second to execute. This is the mode in which I
ran the benchmarks.

.l¥81-Folih certainly feels rather different from
any other Forth I have used. Its method of compila
tion allows the use of DO .. .LOOP, IF and BEGIN
8tructures directly from the keyboard outside of colon
definitions; in addition error checking is performed
when you press SPACE so that you can get a wrist
slap even before you hit return! Several words
actually execute on SPACE as well as RETURN which
is disconcerting at first.

ZX81-Folih also departs from orthodoxy in its editing
and storage methods. Instead of a separate text
editor which works on 1024 character blocks, as is
usual, Husband uses a permanently present edit
mode. The screen is split horizontally in two, the
upper part being used for editing and the lower for
execution. Pressing SHIFT EDIT toggles the cursor
between these two display areas. Code wrinen in the
editing part (which does not scroll) stays permanently
on the screen until erased or a warm start is per-

I ANGUAGES
ZX81FORTH

formed. Editing within the edit screen is by full tour
direction cursor movement in an inserting mode,
with RUBOUT for deletion. The edit screen holds 15
lines of 32 characters, and is separated from the 8
line execution screen by a reversed strip in which the
come nts of the PAD are displayed; this is used a tem
porary "parking space" for lines of text that need to
be moved.

Once a definition is finished it can be compiled
immediately by pressing SHIFT Q or the whole edit
screen can be compiled together by executing CPL in
the execution screen. If your program fills more than
one edit screen you will have to compile one screen,
erase it and then write the next The contents of the
edit screen can be saved to tape or loaded from tape
as a numbered block by issuing SAVE or LOAD in the
execution screen; any text, not only Forth code, can
be so stored. Provision is made for chained loading of
blocks using the --> word, which means "now
compile the next higher numbered block". It came as
no surprise to me to find that the ZX81 would not
SAVE or LOAD on my cassene recorder jl've never
successfully loaded a ZX81 program in my life,
though a million people somewhere do it). It did
cause some cursing in the earty hours when I was
trying to run the benchmarks.

Though this is a very simple and limited editor, it
is highly effective and tar less terrifying to the novice
than the dreaded Ragsdale line editor, which must
have put more people off Forth than I care to think
about; its immediacy resembles that of a good Basic
editor such as Commodore's or Sharp's. It is rather
unwieldy for large programs but this is hardly the
machine for such project anyway.

And so the meat of the maner . .l¥81-Folih's claim to
fame [and indeed to an article in this magazine) lies in
its multi-tasking ability. As multi-tasking is more
usually associated with minicomputers, or at the
least 16-bit micros, it is surprising to say the least to
find it on a machine at this price. The answer to this
riddle lies in the ZX81 's architecture which makes
extensive use of interrupts; it would actually be
harder to achieve multi-tasking on the average CP/M
machine.

.l¥81-Folih is multi-tasked even before you set
about defining your own tasks. Three tasks run con
tinuously: a 1/50 of a second clock task which is the
Master Task [and so uninterruptable); a System Task

which does the interpreting and compiling; and the
keyboard scan which is treated as a task. fts a conse
quence of the latter, it is always poss1ble to stop a
ZX8l-Forrh program with the break key. Even a
definition such as:

: CONTEMPLATE-NAVEL BEGIN AGAIN ;

which spells suicide in ordinary Forths, can be
stopped since the keyboard task continues to run
alongside the infinite loop.

Defining your own tasks is easy to do, though
inevitably also easy to do wrong. Any Forth definition
can be declared to be a task by giving it an arbitrary
task-name, so:

TASK FIRST-TASK MYDEF

where MYDEF is a colon or code defined word. The
task-name is recorded in the dictionary but nothmg
happens until you schedule the task to be executed.
A system clock [accessed by the TIME word) is used
to do this in real-time. The syntax chosen for
scheduling is delightfully natural and helps com
prehension of what can be a potentially confusing
subject. For exam pie:

EVERY 5 TS FIRST-TASK

would cause MYOEF to be executed every 5 seconds
[the available time units are n [forT ask Ticks of 1/50
secj. TS, TM [Task Minutes), TH, TO, TW and TY for
hours, days weeks and years. Alternatively one
could say

IN 3 TD FIRST-TASK

which would run MYOEF in three days time [assum
ing you leave the computer switched on that is!). AT
can be used in a similar way to execute a task AT a
certain time; it calculates the time interval from
current for you and then passes it to IN. These com
mands can be combined:

IN 12TH RRST-TASK EVERY 30 TS ARST
TASK

causes MYOEF to start executing in 12 hours and then
to do so every 30 seconds. Second, third and so on
tasks can be defined and scheduled in a similar way,
the limit being memory space, processor oomph and
the practicalities of task queueing. Tasks are con
trolled by a queueing mechanism; if you schedule a
task to execute every second which takes two
seconds to execute, it will blow the system up in fine
style by overflowing the task queue. Tasks can be
controlled independently of their scheduling by the
words STOP, START and RUN [which runs a named
task immediately). A short program can also be made
to run continuously in the background, though such a
program will bring the system to its knees if it tries to
access the keyboard or the console; in practice back
ground programs are best confined to ones which
merely schedule higher priority tasks to run. For
instance:

:DO-IT RUN FIRST-TASK;
BACK DO-IT

will put the program 00-IT into background so that
wheneverthe system is doing nothing else it will run,
causing FIRST-TASK to be executed. If FIRST-TASK
takes much more than 1/1 Oth of a second to execute
though, the whole system's performance will
degrade noticeably.

LANGUAGES
ZX81FORTH

0 •" I""·· t~· : .. - ._t- t h ' ;..- l
tt. l..., I t,,. ,_ •·t ft. , 1-~

1·:, (AI I ; _. -. ,- ~:~ { h "- _-.
: (•fU ,. ~II o! n I< l t,,,-P4(• lf1~¥..·'

.: r. 1 .w ,- ~- :
: T..,(, , ~~·--'; t" r -;- t .:.. tll,~lllE"

l- ·""' ;. ;
: !I"!F•t f l""f •···•~· LH·.i I (1UL
! <·lif ••.•••• -' 'r. ;

~~~~~.,--~,~~~~~.--~Trl~lT~l~lr~O~~TE 
f"f,!_•f ;.-o, (·!;[&:: J::·FdNT 

;,· >kT~ .F ,.CN 
(• (• 

The editor runs in the top half of the screen whtle 
the lower half is reserved for comptltng and 
executing words. 

Three tasks are executing. prtnttng the words 
''orte'; "two" artd "three" at 1, 2 and J second 
tntervals. Meanwhile. the keyboard is still 
available . . 

There IS no mention 10 the manual of any process 
forcommumcation between tasks; each task gets its 
own stack so that route is excluded. David Husband 
informs me that there are some other words in the 
tasking set which will only be documented in a 
forthcoming Technical Manual for advanced users, 
which will render this possible. 

The standard ZX81 has no 1/0 apart from the 
printer/RAM expansion bus but it is possible to do 
some control work via this route, as support for both 
the Sinclair printer and a standard ASCII serial device 
are built in. By purchasing one of the several available 
third party 1/0 expans1ons it should be possible to use 
this machine as a cheap real- time controller; this will 
probably involve you in some machine code defini
tions for the driver routines though, as the port 
addressing words P! and P@ are not provided. 

Husband's next project. as reported in SOFT two 
issues ago, is a Similar implementation for the Spec
trum which comes on a card with parallel and serial 
1/0 hardware, thus foOTling the bas1s of quite a 
heavyweight real-time machine. 

Combining the split screen capability with multi
ple tasks offers some unusual opportunities for 
games software, though creating robust programs 
with user interaction will not be easy. Forth can be a 
highly strung environment at the best of times and 
the addition of real- time tasking opens up multiple 
possibilities for crashing the system, especially as 
few of us are familiar yet with the concepts 
involved. 

0SCUMENTA!!ON 

The manual for ZX81-Forrh is a 70-page duplicated 

document which provides all the information that an 
experienced Forth user would need to fire it up, 
though it makes no pretence at being a beginne(s 
tutorial. Nevertheless the tone is friendly and unpat
ronising with no dP.Iiberate obfuscation and if used, 
as it suggests, with a book such as Allan Winfield's 
Complete Forth, it could provide a somewhat unusual 
introduction to the language. My only complaints 
about it are the lack of an index, and the non
standard land occasionally haphazard) stack notation 
used. Some useful example programs are included, 
one of which is a concurrent stack display routine. A 
memory map and a chart of the new key allocations 
are presented in appendices; a keyboard overlay or 
stickers would have been even more useful, though 
at the price I suppose you ought to do it yourseff 

CONCLUSIONS 

Though all the hounds of hell will never make me like 
the ZX81, I'm impressed with Husband's achieve
ment in ZX81-Forrh. It prov1des a very cheap way to 
learn what real-time programming is about without 
the agonies of assembly language. The Forth 
implementation is surprisingly complete and even 
rather luxurious in its editing facilities. It isn't hard to 
imagine this machine controlling a model railway, or 
a maze-running Mouse or even laboratory instru
ments, though some extra 1/0 hardware would be 
needed. I suspect that the main customers for it will 
be electronics hobbyists, or programmers who are 
curious about Forth if it doesn't cost too much. It's a 
nice illustration of what powerful software can do for 
a machine that was, let's face it, designed down to a 
price rather than for high performance. so::r 
Ready converted ZX81 available from Densham Com
puters ltd 329 Ashley Road Parkstone, Poole, Dorset. 
Tel' 0202 737493 

SUMMARY 
TlST TIME 

Magnifier 1 sec 
Do-loop 12sacs 
Uteral 18 sacs 
Uteral-store 39sacs 
Variable 20sacs 
Variable-fetch 33 sees 
Constant 18secs 
Ou~ 36sacs 
Increment 43secs 
Test> 48secs 
Test< 49sacs 
Wtile-loop* 84sacs 
Until-loop 84secs 
Unk 2sacs 
Arithmetic 36sacs 

* Non-standard syntax. For a lui/listing and 
explanation of these Folth Benchmarks see 
Pers011al Computer Wodd, December 1983. 

Admin
Highlight



CENTRAL ELECTRICITY GENERATING BOARD 
1 TECHNOLOGY, PLANNING & RESEARCH DIVISION 

BERKELEY NUCLEAR LABORATORIES, 

KELEY, 
ESTEASHlRE GL 13 9PB. 

' Skywave Softw~ 
TJ Curzon Road '·· 
BOURNI::MOUTII 
11Sl 4PW 

DATE 

PURCHASE ORDER 

No. BN 67625/ ::!JP 

Pt•n~:~ co~P&II to: 
THE STORES, 
CFNTAAL ELEC'tAICITY G£NERATING BOARD, 
TECHNOLOGY, PLANNING 
& RESEARCH DIVISION, 
SEfiKELEY NUCLEAR LABORATO"'I"S, 
6ERKEti.J:iY, 
CH .. OS, Curtaa., Plllh:l 

Please supply the fl'>llowing good~ or senih;es in accordance with the conditiO'lS detailed overleaf. 

' 

A 1 £27.00 

WH!CH !S PROPERLY CNAR(;EA•H_f' WH ~BE PAJ:J BY THE BOA 'tO. 

SETTLEMECNT 
TERMS 

DELIVERY 
REQUIREMENTS 
---~ 

YOUR 
QUOTATION 

Nett M/A 

19.7.84 or before 
I'Uf1CHASING AND CONTRACTS OFFICER. 

for CENT9AL FLf:CTFHCITY GENERATING BOAAO 

Current Advertisement 

IMPORT ANT: INVOICE TO. FINANCE SECTION, C.E.C.8. BERKELEY NUCLEAR LABORATORIES, BERKELEY, 13LOS. 

IN THE EVENT OF QUERY PLEASE CONTACT·- TECHNICAL:- K P Stook reqnno, B18278 
• COMMERCIAL:- :-l J Pitcher 




